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Abstract

Through the study of gate arrays we develop a unified framework to deal with probabilistic and
quantum computations, where the former is shown to be a natural special case of the latter. On this
basis we show how to encode a probabilistic or quantum gate array into a sum-free tensor formula
which satisfies the conditions of the partial trace problem, and vice-versa; that is, given a tensor for-
mulaF of ordern × 1 over a semiringS plus a positive integerk, deciding whether thekth partial
trace of thematrix valn,nS (F ·FT) fulfills a certain property.We use this to show that a certain promise
version of the sum-free partial trace problem is complete for the class pr- BPP (promise BPP) for
formulas over the semiring(Q+,+, ·) of the positive rational numbers, for pr-BQP (promise BQP) in
the caseof formulas definedover the field(Q+,+, ·), and if the promise is givenup, then completeness
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for PP is shown, regardless whether tensor formulas over positive rationals or rationals in general
are used. This suggests that the difference between probabilistic and quantum polytime computers
may ultimately lie in the possibility, in the latter case, of having destructive interference between
computations occurring in parallel. Moreover, by considering variants of this problem, classes like
⊕P, NP, C=P, its complement co-C=P, the promise version of Valiant’s class UP, its generalization
promise SPP, and unique polytime US can be characterized by carrying the problem properties and
the underlying semiring.
© 2005 Published by Elsevier B.V.

1. Introduction

The “algebraic” approach in the theory of computational complexity consists in charac-
terizing complexity classes within unified frameworks built around a computational model
or problem involving an algebraic structure (usually finite or finitely generated) as the main
parameter. In this way, various complexity classes are seen to share the same definition, up
to the choice of the underlying algebra. Successful examples of this approach include the
description of NC1 and its subclasses AC0 and ACC0 in terms of polynomial-size programs
over finite monoids[26], and analogous results for PSPACE, the polynomial hierarchy and
the polytimemod-counting classes, through the use of polytime leaf languages [22].Amore
recent example is the complexity of problems whose input is a tensor formula, i.e., a fully
parenthesized expression where the inputs are matrices (given in full) over some finitely
generated algebra and the allowed operations arematrix addition, multiplication, and tensor
product, also known as outer, or direct, or Kronecker product. Evaluating tensor formulas
with explicit tensor entries is shown by Damm et al. [9] to be complete for⊕P, for NP, and
for #P as the semiring varies. Recently also other common sense computational problems
on tensor formulas and tensor circuits were analyzed by Beaudry and Holzer [6]. Tensor
formulas are a compact way of specifying very large matrices. As such, they immediately
find a potential application in the description of the behavior of circuits, be they classical
Boolean, arithmetic (tensor formulas over the appropriate semiring) or quantum (formulas
over the complex field, or an adequately chosen sub-semiring thereof).
In this paper we formalize and confirm this intuition, that basic tensor calculus not only

captures natural complexity classes in simple ways, but also yields a simpler and unified
view on classical probabilistic and quantum computation, which gives probabilistic and
quantum computations the exact same definition, up to the underlying algebra. Apart from
offering a first application of the algebraic approach to quantum computing, our paper
thus reasserts the point made by Fortnow [15], that for the classes BPP and BQP, the
jump from classical to quantum polynomial-time computation consists in allowing negative
matrix entries for the evolution operators, which means that different computations done in
parallelmay interferedestructively.Basedon thisunified framework,wedefineameaningful
computational problem on tensor formula, called thepartial trace tensor formula problem,
which is fundamental to our studies, and allows us to capture important complexity classes.
Our precise characterizations are as follows:
• We present probabilistic computation as a natural special case of quantum computation
using the unified framework on gate arrays, instead of presenting quantum as a more or
less artificial extension of probabilistic computation.
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• The partial tracesum-freetensor formula problem enables us to capture the significant
complexity classes(pr-)P (promise P), NP, pr-BPP (promise BPP), and PP and some of
their quantum counterparts pr-EQP (promise EQP), NQP, and pr-BQP (promise BQP),
by showing completeness results of the problem under consideration.

• By bringing back sums into tensor formulas, we obtain completeness statements for
further complexity classes like⊕P, NP, C=P, its complement co-C=P, Valiant’s class
pr-UP (promise UP), its generalization pr-SPP (promise SPP), and unique polytime US.

Some of these classes are “semantic” classes, i.e., the underlying machine must obey a
property for all inputs, which is not obvious to check, or even undecidable. An example
would beUP, since for a non-deterministic machine to define a language in UP, it must have
the property that for all inputs either exactly one accepting path exists or none. Therefore,
the obtained completeness results are subject to a certain promise.
The paper is organized as follows: In the next sectionwe introduce the complexity classes

needed in later sections and the basics on semirings. In Section3 we provide the reader
with the necessary background on deterministic, probabilistic, and quantum computation
and develop our unified view of all these computations based on gate arrays. Then in Section
4 we introduce the terminology and basic parsing techniques for tensor formulas. Section
5 shows how to transform a gate array into a sum-free tensor formulas of special type and
vice versa, which then is applied in Section 6 to prove the main results of the papers. Then
in Section 7 we consider the unrestricted partial trace tensor formula problem, and finally,
in the last section, we conclude and discuss, related results.

2. Definitions

We use standard notation from computational complexity [2,19,29]. In particular we
recall the inclusion chains:

P⊆ BPP⊆ PP⊇ NP and EQP⊆ BQP⊆ PP⊇ NQP.

Here P (NP, respectively) denotes the set of problems solvable by deterministic (non-
deterministic) Turing machines in polytime, and the probabilistic class PP (BPP, respec-
tively) is the set of all languages accepted by non-deterministic Turing machine in polytime
with majority (strict majority, respectively). Moreover, EQP, NQP, and BQP denote the
quantum analog of P, NP, and BPP, respectively. In the sequel, whenever we simultane-
ously deal with probabilism and quantum, we use the notations and vocabulary from the
quantum case, in order to make the text easier to read.
A semiring[16,23] is a tuple(S,+, ·) with {0,1} ⊆ S and two binary operations+, · :

S × S → S (sum and product), such that(S,+,0) is a commutative monoid,(S, ·,1) is a
monoid, multiplication distributes over sum, i.e.,

a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c,

for everya,b, andc in S, and 0·a = a ·0 = 0 for everya in S.A semiringS iscommutative
if and only if a · b = b · a for everya andb, it is finitely generatedif there is a finite set
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G ⊆ S generating all ofS by summation, and is aring if and only if (S,+,0) is a group.
The special choice ofG has no influence on the complexity of problems we study in this
paper. In this paper we consider the following semirings, which are finitely representable,
i.e., every element fromS can be encoded and easily manipulated over a finite alphabet: the
field of rationals(Q,+, ·) and the commutative semiring of positive rationals(Q+,+, ·).
Moreover, we refer also to the field of complex numbers(C,+, ·).
LetM

k,�
S denote the set of allmatricesoverS of orderk × �. For a matrixA in M

k,�
S let

I (A) = [k] × [�], where[k] denotes the set{1,2, . . . , k}. The(i, j)th entry ofA is denoted
byai,j or (A)i,j , the transpose ofAbyAT, and its inverse, ifA is an invertible squarematrix,
byA−1. A square matrixA over the complex numbers isunitary, if and only ifA† = A−1,
whereA† denotes the conjugate transpose ofA, and for a matrixAwith rational entries this
translates intoAT = A−1, which means thatA is orthogonal. Observe, that an orthogonal
matrix which contains only non-negative rational entries is in fact a permutation matrix.
The traceof an ordern × n square matrixA, denoted by trace(A), equals the sum of its
diagonal elements, i.e.,

trace(A) =
n∑
i=1

(A)i,i .

For k�0, thekth partial traceof A, for short tracek(A), is the sum of its firstk diagonal
elements, counting downwards from the upper left corner. For completeness, ifk exceeds
the order of the matrixA, then thekth partial trace coincides with the trace ofA.
Scalar multiplication, addition and multiplication of matrices form the basics of matrix

calculus and are defined in the usual way. Scalarmultiplication, addition, andmultiplication
of matrices over a semiring are compatible with transposition, i.e.,(a · A)T = a · AT,

(A · a)T = AT ·a, (A+ B)T = AT+BT, and(A · B)T = BT ·AT. Furthermore, ifAandB
are invertible squarematrices having the inversesA−1 andB−1, then(A·B)−1 = B−1·A−1.
Additionally we consider thetensor product⊗ : M

k,�
S × M

m,n
S → M

km,�n
S of matrices,

also known as Kronecker product[21], outer product, or direct product, which is defined
as follows. ForA ∈ M

k,�
S andB ∈ M

m,n
S letA⊗ B ∈ M

km,�n
S be defined as

A⊗ B =

a1,1 · B . . . a1,� · B

...
. . .

...

ak,1 · B . . . ak,� · B


 .

Hence

(A⊗ B)i,j = (A)q,r · (B)s,t ,

wherei = k · (q−1)+ s andj = � · (r−1)+ t . For then-folded iterationA⊗A⊗· · ·⊗A
we useA⊗n as a shorthand notation; defineA⊗0 to be the scalar 1.
The main properties of the Kronecker product of matrices are gathered in the follow-

ing identities. These properties are classical[18] and will be restated for reference only.
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Theyhold trueoverarbitrarysemirings,unlessotherwisestated,whenever thecorresponding
operations are defined:

A⊗ (B ⊗ C)= (A⊗ B)⊗ C,

(A+ B)⊗ (C +D)=A⊗ C + A⊗D + B ⊗ C + B ⊗D,

and
(A⊗ B) · (C ⊗D)= (A · C)⊗ (B ·D),

if the underlying semiring is commutative. Moreover, for arbitrary semirings the last equa-
tion also holds, ifB or C are zero-one matrices. The ultimate equation is probably the
most important one, since it relates ordinary and Kronecker product of matrices. More-
over,a ⊗ A = a · A andA ⊗ a = A · a if a is a scalar,(A⊗ B)T = AT ⊗ BT, and
(A⊗B)−1 = A−1⊗B−1 if AandBare invertible square matrices having the inversesA−1

andB−1, respectively.
Next we define stride permutation matrices, which play a central role in tensor calculus

over commutative semirings. Themn-point stride n permutationmatrixPmnn in M
mn,mn
S is

defined by Ledermann[24] as

Pmnn

(
emi ⊗ enj

)T =
(
enj ⊗ emi

)T
,

whereemi ∈ M
1,m
S andenj ∈ M

1,n
S are row unit vectors of appropriate length. In particular,

Pn1 = Pnn = In, whereIn is the ordern identity matrix. In other words, matrixPmnn
permutes the elements of a zero-one vector of lengthmnwith stride distancen, i.e., the
matrix vector productPmnn · x takes a “card deck”x, splits the card deck intom piles of
lengthn each, and then takes one card from each pile in turn until the deck is reassembled.
If the underlying semiringS is commutative, then stride permutations obey the following
commutation theorem[24]

P kmm · (A⊗ B) = (B ⊗ A) · P �nn ,

whereA ∈ M
k,�
S andB ∈ M

m,n
S . Thus, over commutative semirings one can reverse the

order of a Kronecker productA ⊗ B into B ⊗ A by post-multiplying the equation given
above on both sides with the appropriate inverse of a stride permutation. Very importantly,
looking more closely, it reveals that the commutation theorem holds also true over arbitrary
semirings ifA orB are zero-one matrices.
The main identities of stride permutations are listed below[33]:

P �mnmn = P �mnm · P �mnn

and
P �mnn = (P �nn ⊗ Im) · (I� ⊗ Pmnn ),
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whereIn denotes the identity matrix of ordern×n. Recall also, that the inverse ofPmnn and
in general for every permutation matrixPexists and equals its transposed, i.e.,P−1 = PT.

3. Background on gate arrays and complexity

In this section we introduce gate arrays in order to handle the two types of computations,
i.e., probabilistic and quantum. The wordcircuit is reserved for the traditional idea of an
acyclic network with a unique output bit, and we use the wordgate arrayto describe those
computational networks, which satisfy the below given requirements.
It is useful to think of gate arrays as natural extensions of classical leveled Boolean

circuits. The usual notion of depth and size on Boolean circuits naturally carries over to
gate arrays. These consist of gates interconnected without fan-out2 or feedback, by wires.
Each wire represents a path of a single bit in time or space, forward from left to right, and it
can be described by a state in a two-dimensional space with orthonormal basis|0〉 and|1〉.
The gates have the same number of inputs and outputs, and a gate ofk inputs operates on
the set ofk-bit vectors mapping each of the 2k possibilities of input values to a combination
of output values, i.e., it can be specified by a square matrix over a certain semiringS, which
describes its action on the specified entries and may obey certain properties. Without loss
of generality we may assume, that each gate acts on neighboring wires. This requirement
can easily be achieved at the cost of inserting a quadratic number of extra levels of “swap”
gates, which interchange the values carried by two adjacent wires. Entries to the gate array
are either input bits or non-input bits also calledancilla bits. Thus, ann-bit input to a gate
array over semiringS can be seen as a formal sum of the form

|�〉 =
∑

w∈{0,1}n
�w|w〉, (1)

where�w is inS and|�〉may obey some additional properties, and gates act on certain bits
|0〉 and|1〉 of |�〉 in the natural way. The vector of bits received as input by a gate array can
be regarded as a linear combination of (pure) states. Finally, at the end of the gate array the
decision whether the input is accepted or rejected is done by a particular observation on the
output vector, which is also of the form (1). Next we compare quantum and probabilistic
computation. We continue with the former one—a more detailed discussion can be found
in [4].
Quantumcomputationwasoriginally definedbyDeutsch [10] in termsof quantumTuring

machines: Here the data (qubits) handled by this machine are formally represented as a
vector whose complex components give the distribution of amplitudes for the probability
that the qubits be in a certain combination of values and each transition of the machine acts
as a unitary transformation on this vector. Later it was shown by Yao [36] that polytime
quantum Turing machines (and their inputs) can be encoded in deterministic polytime into
an equivalent quantum gate array, if one allows a small probability of error. In our general
viewongate arrays the properties ofwires, gates, input andoutput vectors, andmeasurement

2 Fan-inand fan-out areelectrical engineering termswhich refer to thejoiningandbranchingofwires; sometimes
logical devices outputkwires with the same signal, hence providing broadcasting, and this is known as fan-outk.
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at the very end of the gate array read as follows: (1) Wires in a quantum gate array carry
qubits and they can be described by a state in a two-dimensional Hilbert space with basis
|0〉 and|1〉. Just as classical bit strings can represent the discrete states of arbitrary finite
dimensionality, so a lengthn string of qubits can be used to represent quantum states in
any Hilbert space of dimensionality up to 2n. (2) The action of ak-input gate is a unitary
operation of the groupU(2k) of 2k × 2k unitary matrices, i.e., a generalized rotation in a
Hilbert space of dimension 2k. The unitarity (orthogonality) property of the squarematrices,
which describe the performance of the gates, implies reversibility, i.e., computations where
the input and output is uniquely retrievable from each other. In this way, it is always possible
to un-compute or reverse the computation. It has been shown[3,11,25,32] that a small set
of one- and two-qubit gates suffices to build quantum arrays, in that anyk-qubit gate can be
simulated by a gate array consisting of two-qubit gates, and the number thereof is at most
an exponential ink. As two-qubit gates it suffices to take the controlled NOT-gate, which is
defined as

x �→ x,

y �→ x ⊕ y,

where⊕ is the two-input one-output XOR function. Moreover, the power of quantum
gate arrays remain unchanged if gates are restricted to implement unitary operations with
entries taken form a small set of rationals [1]. (3) The coefficients�w in vector |�〉 =∑
w∈{0,1}n �w|w〉 are calledamplitudesand they satisfy∑

w∈{0,1}n
|�w|2 = 1. (2)

Without loss of generality the input ancilla qubits are prepared to be in state1√
2
(|0〉 + |1〉).

Assuming an even number of ancillae, we are back with the rationals since
1√
2
(|0〉 + |1〉)⊗ 1√

2
(|0〉 + |1〉) = 1

2 (|00〉 + |01〉 + |10〉 + |11〉) . (3)

Later, we will use a similar trick for probabilistic computations. (4) Finally, there is a
measurement done on the array’s output, which consists in projecting the output vector onto
a subspace, usually defined by setting a chosen subset of the qubits to|1〉, the accepting
subspace. If the qubits are numbered 1 ton, then ak-qubit accepting subset can be chosen
to be qubits 1 tok, at the cost of inserting a quadratic number of extra swap gates. Thus,
the probability of acceptance on inputw equals the 2kth partial trace of the matrix|�〉〈�|,
where the input is mapped to|�〉 by the gate array under consideration.
As quantum classes, also probabilistic complexity classes are usually defined in terms

of Turing machines. Here the Turing machine picks one random bit at a time and acts
deterministically otherwise.3 In fact, deterministic computations, or to be more precise
Boolean circuits, can be made reversible with little cost in efficiency [7], since there exists
a three-bit universal gate for reversible computations, that is, a gate which when applied in
succession to different triplets of bits in a gate array, could be used to simulate arbitrary

3When considering probabilistic Turing machines as Turing machines in which some transitions are random
choices among finitely many alternatives, the below given argument results in gate arrays, where the gates can be
described by stochastic matrices, the only�1-norm preserving linear mapping over the positive rationals.



M. Beaudry et al. / Theoretical Computer Science 345 (2005) 206–234 213

Table 1
Probabilistic and quantum computations on gate arrays compared

Probabilistic Quantum

Semiring Q+ Q (C, resp.)
Wires Bits|0〉 and|1〉 Qubits|0〉 and|1〉

Permutation OrthogonalGates
(Stochastic, resp.) (Unitary, resp.)

Vector entries�w Probability Amplitude
Vectors of unit length in … �1-norm �2-norm
Ancilla �0|0〉 + �1|1〉 1

2(|0〉 + |1〉) 1√
2
(|0〉 + |1〉)

Measurement on|�〉 = ∑
w �w |w〉 ∑

v �v
∑
v |�v |2

reversible computations. This universal gate is called the Toffoli-gate, and is also known as
the double-controlled NOT- or controlled–controlled NOT-gate and its behaviour is

x �→ x,

y �→ y,

z �→ (x ∧ y)⊕ z,

where⊕ is the two-input one-output XOR function. One can easily prove that the Toffoli
gate is universal; by settingz to 1 at the input, the Toffoli gate produces the NAND function,
which is a two-input one-output universal gate for classical irreversible computation. Thus,
from a probabilistic Turing machine an equivalent circuit and in turn a gate array over
the positive rationals can be built, in which an appropriate number of random bits are fed
alongside the input bits. Whether the input belongs to the language specified by the Turing
machine is verified by counting those combinations of random bits, for which the output
bit takes value 1, assuming that all random bit combinations have equal length and are
equally likely. In this way, the constraints of a gate array read as follows: (1) Wires carry
bits |0〉 and|1〉. (2) Gates implement deterministic reversible computations, i.e., they carry
out permutation operations and thus can be described by matrices with 0–1 entries. (3) The
coefficients�w in vector|�〉 = ∑

w∈{0,1}n �w|w〉 are calledprobabilitiesand they satisfy∑
w∈{0,1}n

�w = 1. (4)

Moreover, input ancilla (probabilistic) bits are prepared to be equally likely, i.e., set to
1
2 (|0〉 + |1〉). (4) The measurement at the end of the gate array consists in determining
the probability that the decision bits take some predefined values, usually set to|1〉, at the
output level. Thus, the probability of acceptance equals the sum of some the coefficients
�w corresponding to the accepting subspace of the output vector|�〉 = ∑

w∈{0,1}n �w|w〉.
A comparison of probabilistic and quantum computation is shown in Table1.
When restricting to rational numbers, the essential difference between probabilistic and

quantum computation lies in the way, the probability of acceptance is determined. In most
papers, quantum computation is presented as a natural extension of probabilistic computa-
tion. This is not convenient for us, therefore we go the other way around and want to explain
how to see probabilistic computation as a natural special case of quantum. In this respect, we
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Table 2
Probabilistic computations as a natural special case of quantum computation

Probabilistic Quantum

Semiring Q+ Q

Wires Bits|0〉 and|1〉 Qubits|0〉 and|1〉
Orthogonal OrthogonalGates
Permutation

Vector entries�w Amplitude Amplitude
Vectors of unit length in … �2-norm �2-norm
Ancilla

∑
w∈{0,1}2 �w |w〉 1

2(|0〉 + |1〉)⊗2 1
2(|0〉 + |1〉)⊗2

Measurement on|�〉 = ∑
w �w |w〉 ∑

v |�v |2 ∑
v |�v |2

are already half the way towards this goal. Consider probabilistic gate arrays in more detail.
Since all the gates in the array do classical reversible computations they only permute the
different vector components without ever combining them, i.e., no interference ever takes
place along the array’s computation, so that it does not matter in terms of overall outcome,
whether the vector entries are probabilities represented as such or as amplitudes. However,
using amplitudes enables us to describe the measurement at the end of the computation as
in the quantum case, by determining the partial trace of a matrix. Nevertheless, we face the
problem, that the amplitudes compared to the probabilities in the original vector may not be
rational anymore. For instance, the amplitudes to1

2(|0〉 + |1〉) are 1√
2
for both|0〉 and|1〉.

As argued in the quantum case, when considering an even number of ancilla bits, we can
overcome this problem still staying rational—see Eq. (3). This observation allows us to see
probabilistic computation as a natural special case of quantum computation as follows: (1)
Wires carry bits|0〉 and|1〉 and (2) gates are describable by orthogonal matrices over the
positive rationals. It is elementary to verify that theseareexactly thepermutationmatrices. In
other words, these gates are still classical reversible gates. (3) Instead of dealing with proba-
bilities we compute with amplitudes, which implies that the vector|�〉 = ∑

w∈{0,1}n �w|w〉
preserves�2-norm, and the even number of ancilla bits are prepared to be equally likely,
whichmeans, that they are set to12 (|00〉 + |01〉 + |10〉 + |11〉). (4) Themeasurement at the
end of the gate array is done as in the case of quantum gate arrays. Our view on probabilistic
computation as a natural restriction of quantum computation is depicted in Table 2.
The above given discussion motivates and satisfies the following definition and

theorem.

Definition 1. Let S be the set of positive rationalsQ+ or the set of rationalsQ. Define
R,A ⊆ S with R ∩ A = ∅ andR ∪ A ⊆ [0,1]. A logspace (polytime) uniform family of
polynomial size gate arrays overS determines a languageL as follows: Assume 1|w| �→ C

with an even number of ancilla bits, vector|�〉 is built by inputw and appropriately set
ancilla bits, and|�〉 �→ |�〉 runningC on inputw. Then

w ∈ L impliesfC(w) ∈ A
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and

w /∈ L impliesfC(w) ∈ R,
wherefC(w) denotes the probability that|�〉 is projected onto the accepting subspace, i.e,
equals the partial trace of|�〉〈�| restricted to the accepting subspace.
The classCS(R,A) consists of all languagesL ⊆ �∗ that can be accepted by gate arrays

overS satisfying the above property.

The following theorem is immediate by the previous discussion on quantum and proba-
bilistic computations. We state it without proof.

Theorem 2. (1) For the positive rationals we find:
(a)CQ+(R,A) = P if R = [0] andA = [1].
(b) CQ+(R,A) = NP if R = [0] andA = (0,1].
(c) CQ+(R,A) = PPif R = [0, 12] andA = (12,1].
(d) CQ+(R,A) = BPPif R = [0, 13] andA = [23,1].
(2) For the rationals we find:
(a)CQ(R,A) = EQPif R = [0] andA = [1].
(b) CQ(R,A) = NQP if R = [0] andA = (0,1].
(c) CQ(R,A) = PPif R = [0, 12] andA = 1

2,1].
(d) CQ(R,A) = BQP if R = [0, 13] andA = [23,1].
Concerning the above theorem, there are three points to mention: (1) Observe, that the

result on BPP (BQP, respectively) includes the constraint, that the cutpoint1
2 is isolated,

i.e., the probability never falls inside the open interval(13,
2
3). Nevertheless classes PP,

BPP, and BQP can be redefined with a cutpoint other than1
2. (2) The quantum analog to

PP is in fact no different than PP itself. We recall the simple argument, which leads to this
observation.An alternative characterization of PP reads as follows[13]:A languageL ⊆ �∗
belongs to PP if and only if there is aGapP functionf whose value on inputw is positive,
i.e., f (w) > 0 if and only ifw is in L. Now given a quantum gate array, which checks
membership ofw in Lwith unique accepting and rejecting configurations, summing all the
positive and negative contributions to the total amplitude for these configurations defines
four #P functions. The difference between the probabilities of acceptance and rejection by
this gate array is a quadratic polynomial in these four functions, which belongs toGapP
by the closure of #P under finite sum and product. Thus, languageL is a member of PP.
(3) Finally, it was shown by Fenner et al. [14] that NQP= co-C=P, where co- denotes the
complementation operation and C=P is the class of sets of type{ x | f (x) = g(x) }, for
somef, g ∈ #P, which was introduced byWagner [35].

4. Tensor formulas and problems

In this section we introduce tensor formulas over semirings and some basic techniques
to deal with them. Moreover, we define the partial trace problem, which is fundamental to
our studies.
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Definition 3. The tensorformulasover a semiringS and theirorderare recursively defined
as follows:
(1) Every matrixF from M

k,�
S with entries fromS is a (atomic) tensor formula of order

k × �.
(2) If F andG are tensor formulas of orderk × � andm× n, respectively, then

(a) (F +G) is a tensor formula of orderk × � if k = m and� = n.
(b) (F ·G) is a tensor formula of orderk × n if � = m.
(c) (F ⊗G) is a tensor formula of orderkm× �n.

(3) Nothing else is a tensor formula.
LetTS denote the set of all tensor formulas overS, and defineTk,�S ⊆ TS to be the set of
all tensor formulas of orderk × �.

In this paper we only consider semiring elements whose value can be given with a
standard encoding over some finiteG. Hence, atomic tensor formulas, i.e., matrices, can
be string-encoded using list notation such as “[[0 0 1][10 1]].” Non-atomic tensor formulas
can be encoded over the alphabet� = {0} ∪ G ∪ {[, ], (, ), ·,+,⊗}. Strings over� which
do not encode valid formulas are deemed to represent the trivial tensor formula 0 of order
1× 1.
Let F be a tensor formula of orderm × n. Its size, denoted|F |, is max{m, n} and its

lengthL(F) is the number of symbols in its string representation. It is easy to show that
|F |�2O(L(F)). The upper bound is attained whenF is an iterated tensor product.

Lemma 4. Testing whether a string encodes a valid tensor formula and if so, computing
its order, can be done in deterministic polytime.

Proof. LetM be the Turing machine which, on an input stringw, rejects and halts if the
bracketing or operator structure ofw are illegal. This can be tested in logspace. Ifw is legal,
thenM continues by running the functionorder described by the following pseudo-code:
function order (tensorF ) : (nat, nat);
var k, �,m, n : nat;
begin caseF in:

atomic: determine order ofF and store it in(k, �);
return (k, �);

(G+H): (k, �) := order(G); (m, n) := order(H);
if k �= m or � �= n then halt and rejectfi;
return (k, �);

(G ·H): (k, �) := order(G); (m, n) := order(H);
if � �= m then halt and rejectfi;
return (k, n);

(G⊗H): (k, �) := order(G); (m, n) := order(H);
return (k�,mn);

esac;
end.
Theorder function may be implemented onM, using a tape in a pushdown like fashion to
handle the recursive calls. HenceM operates in polytime, sinceM performs a depth-first
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search of the formula, and since polynomial space is sufficient to keep track of the orders
in binary notation. The initial callorder(F ) thus returns the order ofF . �

Definition 5. For each semiringS and eachk and� we define valk,�S : T
k,�
S → M

k,�
S , as

follows:

valk,�S (F ) =



F if F is atomic
valk,�S (G)+ valk,�S (H) if F = (G+H)

valk,mS (G) · valm,�S (H) if F = (G ·H) andG ∈ T
k,m
S

valk/m,�/nS (G)⊗ valm,nS (H) if F = (G⊗H) andH ∈ T
m,n
S .

That is, we associate with each tensor formulaF of orderk × � its k × �matrix “value” in
the natural way.

The partial trace evaluation problem is defined as follows:

Definition 6. LetS be a semiring. The partial trace evaluation problemmeans to determine
thekth partial trace of valn,nS (F · FT) for a given tensor formulaF overS of ordern × 1
and a natural numberk, which is a power of two and is written in binary.

5. From gate arrays to sum-free tensor formulas and back

In this section we show how to encode gate arrays into specific tensor formulas over
an appropriate semiring, and conversely, how to compute from a particular type of tensor
formulaF a gate array which will later be used as a mean to solve a partial trace instance
built from F . In particular, we are interested in sum-free tensor formulas obeying some
further easy properties.

Definition 7. A tensor formulaF is sum-freeif and only if none ofF and its sub-formulas
has the formG + H , for tensor formulasG andH . A tensor formula isarray-like if and
only if all sub-formulas ofF evaluate to square matrices or column vectors. Moreover, a
array-like tensor formulaF is orthogonal array-likeif and only if all sub-formulas ofF
evaluate to orthogonal square matrices or column vectors whose�2-norm equals 1.

We choose the term “orthogonal array-like” because as we will show, such a formula
can be reorganized as a product of an orthogonal matrix with a column vector, i.e., as the
specification of an orthogonal system of linear equations. Observe, that “sum-free array-
like” implies that each sub-formulaF of a tensor formula fulfills the following properties:
If F = (G · H), thenG is a matrix and eitherH is a matrix or a column vector, and if
F = (G⊗H), either bothG andH are matrices or both are column vectors.
In the forthcoming we use the terminology that a gate array is said to bereversibleif

and only if all gates in the gate array can be described by orthogonal matrices. Thus, both
quantum and probabilistic gate arrays are reversible gate arrays.
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5.1. From gate arrays to sum-free tensor formulas

The construction of a sum-free tensor formula from a given gate array is rather straight-
forward and is done as follows:

Lemma 8. Let C be a(reversible) gate array operating on n wires, whose gates can be
described by(orthogonal) square matrices over a semiringS. Then there is a polytime
computable function,which given a suitable encoding of C, computes a(orthogonal) array-
like sum-free tensor formulaFC of order2n × 2n such that for eachx = (x1, . . . , xn) ∈
{0,1}n, if gate array C maps|�〉 = |x1 . . . xn〉 to |�〉, then

|�〉 = val2
n,2n

S (FC) · |�〉,
and|�〉 = val2

n,1
S (dT

x ) for some polytime computable sum-free tensor formuladx .

Proof. Let C be am-leveled gate array, whereCi denotes theith level ofC, with C1 is
the left-most andCm the right-most level. Without loss of generality we assume that each
level contains only one gate and moreover each gate acts on neighboring wires. This can be
achieved by inserting extra swap gates. In the following we describe how to construct an
equivalent tensor formulaFC fromC.
If level Ci contains ak-bit gateH with 1�k�n acting on the wiresj up toj + k − 1,

for j + k − 1�n, then

FCi =
(
I

⊗j−1
2 ⊗H ⊗ I

⊗n−j−k+1
2

)
,

is the tensor formula of order 2n × 2n which describes the system evolution in theith time
step. Recall, thatA⊗n is a shorthand notation for then-fold iterationA⊗ A⊗ · · · ⊗ A.
To complete the description of the sum-free tensor formulaFC over semiringS let

FC = FCm · · ·FC2 · FC1,
since according to the usual convention, the input-to-output direction in a gate array is
left-to-right, while in its matrix representation, the array’s action on its input is given as a
product of matrices with a column vector, and is read right-to-left. It is readily verified that
for eachxi ∈ {0,1} with 1� i�n, if Cmaps|�〉 = |x1 . . . xn〉 to |�〉, then

|�〉 = val2
n,2n

S (FC) · |�〉,
and|�〉 = val2

n,1
S (dT

x ) for the sum-free tensor formula

dx = e2x1+1 ⊗ e2x2+1 ⊗ · · · ⊗ e2xn+1.

SinceFC anddx are polytime constructible from a suitable description of the gate arrayC
and its input, the stated claim follows.�

Although Lemma8 only applies to input vectors of the form|x1 . . . xn〉, arbitrary input
vectors of the form|�〉 = ∑

w∈{0,1}n �w|w〉 are appropriately mapped to output vectors due
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to the linearity of gate array “semantics.” Observe, that it is not obvious that all possible
vectors|�〉 obey sum-free tensor formula representations. Nevertheless, input vectors for
probabilistic and quantum computations do obey sum-free tensor formula representations,
since for a gate array onnwires withm1 input bits and 2m2 ancilla bits, i.e,n = m1+2m2,
we find that for a particular inputx = (x1, . . . , xm1) ∈ {0,1}m1 the input vector can be
described by

|�〉 =
(
m1⊗
i=1

|xi〉
)

⊗
(
m2⊗
i=1

1

2
(|00〉 + |01〉 + |10〉 + |11〉)

)
,

where(|00〉+ |01〉+ |10〉+ |11〉) can be explicitly given without summation. Thus, in both
cases sum-free tensor formulas exist.
Moreover, theprevious lemma is not restricted to gate arraysoperatingonnwires carrying

(qu)bits only. In fact, one can easily generalize the result of the lemma such that it work
on gate arrays with multi-valued logic, in the sense that there is a mapping from{1, . . . , n}
to the natural numbers, defining the arity of the wires. This approach is even more general
than the multi-valued bit approach presented studied in the literature[27], where each wire
carries (qu)dits of same dimensionality. This more general model allows us to build gates
dealing with, e.g., (qu)bits and (qu)trits simultaneously in a single gate.

5.2. From sum-free tensor formulas to gate arrays

In the formula to gate array part, wemust deal with the fact that a sum-free tensor formula
may containmatrices of various sizes and vectors at atypical locations. In principle, the latter
can be regarded as a non-standard manner of specifying the gate array’s input. Thematrices
of variousorders, however, cannot be readily interpreted in termsof gatearray computations.
For instance, consider the sum-free tensor formula

(A⊗ B)(B ⊗ A),

whereA is of order 2×2andBanorder 3×3matrix. BothKronecker products independently
considered may be realized on a two wire gate array, where the wires carry bits and trits,
but (A⊗B)(B ⊗A) lacks a direct realization on gate arrays. This comes from the fact that
the wires of the independently constructed gate arrays do not fit together, i.e., a bit in the
first product must become a trit in the second one and vice versa. To overcome situations
like the above described one the following solutions may be considered:
(1) We stay with “bit-logic” and thus restrict tensor formulas to suit our needs, i.e., all

atomic sub-formulas are matrices whose order is a power of two or column vectors of
length 2k for somek�0. This explicitly forbids tensor products as the above given ones
and thus is the simplest solution to our problem.

(2) Matrices of various orders are allowed, and therefore gate arrays as introduced must
be generalized to cope with this new situation. In this way we focus on a multi-valued
bit approach[27], where wires carry (qu)dits, i.e., states|0〉, |1〉, . . . , |d − 1〉, from
a d-dimensional space. In fact, this approach is even more general, since gates may
act on wires with various dimensionality. For instance one can design gates acting on
(qu)bits and (qu)trits simultaneously. Considering our small example, we find, that the
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Kronecker product(B ⊗A) can be turned into(A⊗B) by pre- and post-multiplying it
with appropriate stride permutationmatrices, whenworking in a commutative semiring.
Thesestridepermutationsact onbothwires—the (qu)bitsand (qu)trits—simultaneously.
Hence, we can come up with a gate array realizing the behaviour of(A⊗ B)(B ⊗ A).
Nevertheless, for more complex examples like, e.g.,(A⊗B⊗C)(D⊗C), whereAand
B are as above andC is a 5× 5, and finallyD a 6× 6 matrix, further problems face up,
since the order of the involved matrices in the Kronecker products may not be equal,
but their products are. Here the sub-formula(A ⊗ B ⊗ C) can be implemented on a
gate array with three wires carrying (qu)bits, (qu)trits, and (qu)quints, while(D ⊗ C)

induces a two-wire gate array, where wires carry (qu)sets and (qu)quints.Again, further
restrictions have to be imposed in order to overcome these problems.

(3) Finally, gates may act on various (qu)dits as above, but instead of redefining the gate
array’s action, the action of the gate is embedded in a higher dimensional space of
suitable size, i.e., (qu)dits are embedded in dimensionality 2k, for suitablek�0. Tech-
nically, this means that we pad our matrices and vectors in order to turn their orders into
powers of two, and thus working on gate array wires carrying (qu)bits only. Observe,
that the underlying computational model is quite general, since it allows, e.g., (qu)bits
and (qu)trits to be processed by a single gate. This is in fact the most general scenario
for the multi-valued bit approach, since the wires are “non-homogeneous” w.r.t. their
(qu)dits.

Although, we favour the third approach, since the problem solution is the most general one,
we first have to deal with the first approach, working with (qu)bits only.

5.2.1. Tensor formulas where all atomic sub-formulas are powers of two
Before we show how to transform a suitable tensor formula into a gate array acting on

(qu)bits, we show that the postulated requirements on a given tensor formula as specified
in the discussion above, can be verified in deterministic polytime. We omit the proof of
following lemma, because it is quite similar to the proof of Lemma4.

Lemma 9. Testing whether a string encodes a valid tensor formula and if so(a) to check
sum-freeness, (b) orthogonality on sum-free formulas, (c) the array-like property, and (d)
whether all atomic sub-formula have orders, which are powers of two, can be done in
deterministic polytime. �

Now we are ready to prove the converse relation, i.e., transforming a array-like sum-free
tensor into an equivalent gate array, if the formula obeys some additional easily checkable
properties.

Theorem 10. Let F be a(orthogonal) array-like sum-free tensor formula of order2n × 1
over semiringS,where the orders of all atomic sub-formulas are powers of two. Then there
is apolytimecomputable function,whichgiven the tensor formulaF,computesa(reversible)
gate arrayCF overS operating on n wires and an input|�F 〉 (with 〈�F |�F 〉 = 1), such
that

|�F 〉 = val2
n,1

S (F ),
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if gate arrayCF maps|�F 〉 to vector|�F 〉, and |�F 〉 = val2
n,1

S (dT
F ) for some sum-free

tensor formuladF .

Proof. We prove the following more general statement, where we call a tensor formulaF

closedif F has order 2n × 1, for somen�0, andopenif the order equals 2n × 2n, for
somen�1. LetF be a closed (open, respectively) array-like sum-free tensor formulaF

over semiringS having only atomic sub-formulas whose orders are powers of two. Then
there is a polytime computable function, which given the tensor formulaF , computes a gate
arrayCF overS operating onnwires and an (arbitrary, respectively) input|�F 〉, such that
|�F 〉 = val2

n,1
S (F ) (|�F 〉 = val2

n,1
S (F ) · |�F 〉, respectively) if gate arrayCF maps|�F 〉 to

vector|�F 〉, and|�F 〉 = val2
n,1

S (dT
F ) for some sum-free tensor formuladF .

The statement is shown by induction on the (orthogonal) sum-free tensor formulaF . If
F is an atomic sub-formula, then we distinguish the cases whetherF is open or closed:
(1) If F is closed, i.e., is of order 2k × 1, then it specifies the amplitudes for all pos-

sible combinations of values ofk input bits. Thus, the trivial gate arrayCF only
consisting ofk wires with no gates at all and the sum-free tensor formuladF = F

satisfies4

|�F 〉 = val2
k,1

S (F ),

sinceCF realizes the identity transformation on|�〉 = val2
k,1

S (dT
F ); this means|�〉

equals|�〉.
(2) If F is a matrix of order 2k × 2k, i.e., formulaF is open, thenF is interpreted as the

specification of ak-bit gateF . Thus, the gate arrayCF consists of the singlek-bit gateF
acting onkwires and the input to the gate is some vector as, e.g., the unit column vector
e2

k

1 of length 2k. Trivially, the gate array and the input vector fulfill the requirements

above. Observe, thate2
k

1 = (e21)
⊗k.

Now assume that the statement holds for sub-formulasG andH of the tensor formula
F . Thus, by induction hypothesis there are gate arraysCG andCH and inputs|�G〉 and
|�H 〉, that can be specified by sum-free tensor formulasdG anddH , respectively. Then we
distinguish two cases:
(1) If F = (G · H), then we combine the sub-arraysCH andCG in sequential manner,

whereCH is to the left ofCG, and define the input to be|�H 〉. It is easy to see thatCG
and|�H 〉 fulfill the required properties.

4 If working on a fieldS instead of a semiring, one can show the following result: Let|�〉 be a vector over the
fieldS of length 2k obeying〈�|�〉 = 1. Then there is a matrixA over an extension field ofS, whose first column
equals|�〉, which can be decomposed into an orthogonal matrixQ and an upper diagonal matrixRwhose upper
left element equals 1, and both matrices are overS, satisfyingA = Q · R. The proof relies on a careful analysis
of the Gram-Schmitt[17] algorithm, which inductively computes an orthogonal (orthonormal) basis from any set
of linearly independent vectors. Therefore, the orthogonal matrixQmay be interpreted as the specification of a

k-bit gateQ. Thus, a gate array consisting of a singleQ-gate acting onkwires maps input|�〉 = e2
k

1 = (e21)
⊗k to

vector|�〉. Observe, that ifS is a (semi)ring, then a similar statement as that for fields is not true in general.
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(2) If F = (G⊗ H), then the sub-arrays are combined in parallel, whereCG is on top of
CH . Thus, the input equals|�G〉⊗|�H 〉, which can be described by the sum-free tensor
formuladG ⊗ dH . Again, the induction assertion is fulfilled.

This proves the statement. Observe, that one can easily show, that wheneverF is an
orthogonal array-like sum-free tensor formula, then all gates in the gate arrayCF can be
specified by orthogonal matrices, and moreover, the input|�F 〉 obeys〈�F |�F 〉 = 1 and
has a sum-free tensor description.�

The proof above reveals a significant difference of probabilistic and quantum
computation—see the footnote again. In the former case, the ancilla bits must be given
well prepared to the gate array, since the gate array can only perform deterministic compu-
tations and thus, is not able to prepare them itself. In the latter case, this preparation is not
necessary, since the gate array itself is able to prepare them properly. This means, that in the
quantum case one can set all ancilla bits to, e.g.,|0〉, without changing the computational
power of the underlying device.

5.2.2. Tensor formulas in general
Finally, let us consider arbitrary (orthogonal) array-like tensor formulas, not necessarily

obeying the property that all atomic sub-formulas are powers of two. The following lemma,
which is very technical and the main ingredient of the transformation to an equivalent gate
array, shows how to pad matrices and vectors in order to turn their orders into powers of
two.

Lemma 11. Let F be a(orthogonal) array-like tensor formula F of ordern × 1 over
semiringS. Then there is a polytime computable function, which given the tensor formula
F, computes a(orthogonal) array-like tensor formula G over the same semiring of order
m×1having only atomic sub-formulas whose orders are power of two, such thatvaln,1S (F )

appears in the upper left corner ofvalm,1S (G), i.e.,

valm,1S (G) =
(
valn,1S (F )

(0)Tn−m

)
,

where(0)k denotes the all zero row vector of length k. If F is sum-free, then so is tensor
formula G.

Proof. Weprove themoregeneral statement, that any (orthogonal) array-like tensor formula
F of ordern × 1 (n × n, respectively) over semiringS can be turned into a (orthogonal)
array-like tensor formula over the same semiring of orderm × 1 (m × m, respectively)

having only atomic sub-formulas whose orders are power of two, such that valn,1
S (F )

(valn,nS (F ), respectively) appears in the upper left corner of the computed tensor formula
(and thus is a block diagonal matrix, respectively), when evaluated. In order to simplify
representation, we speak of the computed tensor formula as the padded version ofF and
denote it by�(F ). Observe, since�(F ) has only atomic sub-formulas whose orders are
power of two, the order of�(F ) is a power of two, too.
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We proceed by induction ofF and distinguish three cases:
(1) If F is an atomic formula, then consider two subcases: (1)F is a column vector of order

n×1, then define�(F ) to be the�(n)×1 column vector with entries fromF at the first
n positions, and zero otherwise. Here�(n) denotes the smallest power of two greater
than or equal ton. (2)F is an ordern× n matrix, then set�(F ) to be the�(n)× �(n)
block-diagonal matrix consisting in a copy ofF at the upper left corner and the identity
matrixI�(n)−n at the lower right. Obviously, in both cases�(F ) satisfies the above given
requirements. Moreover, formula�(F ) is sum-free.

(2) If F = (G ·H), then we argue as follows: SinceF is array-like, tensor formulaG does
not evaluate to a column vector. Hence, by induction we may assume that�(G) is of
order 2k × 2k, for somek. Then we consider two subcases: (1) IfH is a column vector,
then by induction hypothesis�(H) is of order 2� × 1, for some�, and we define the
sum-free tensor formula

�(F ) =



(I⊗�−k
2 ⊗ �(G)) · �(H) if k < �,

�(G) · �(H) if k = �, and

�(G) ·
(
((e21)

⊗k−�)T ⊗ �(H)
)

if k > �.

(2) If H is a matrix, then the smaller matrix must undergo some padding as in the
previous case. Since the construction is very similar as above, the details are left to
the reader. Easy calculations show that�(F ) is indeed a (orthogonal) array-like tensor
formula, having only atomic sub-formulas whose orders are power of two. As in the
previous case,�(F ) is sum-free, wheneverF is sum-free.

(3) If F = (G⊗H), then we distinguish two cases and argue as follows:
(a) First, assume thatG andH are of orderm × 1 andn × 1, respectively. Then by

induction hypothesis, assume that�(G) (�(H), respectively) is a array-like sum-free
tensor formula of order 2k × 1 (2� × 1, respectively) for somek (�, respectively).
To improve readability of the proof, let� = 2k and� = 2�. Moreover, let

�(G)= (g1 . . . gm gm+1 . . . g� )
T ,

�(H)= (h1 . . . hn an+1 . . . h� )
T

and
�(G)⊗ �(H)= (g1h1 g1h2 . . . g�h� )

T .

In order to build�(G⊗H) from �(G)⊗ �(H) we proceed in two steps: (i) First we
pre-multiply�(G)⊗ �(H) by the stride permutation matrixP ��

� , which results in

P
��
� · (�(G)⊗ �(H)) = (g1h1 g2h1 . . . g�h1 g1h2 . . . g�h� )

T ,

and then (ii) we pre-multiply with a block-diagonalmatrixHn,�,�, whose two blocks
are the stride permutationP �n

� (top left) and some permutation of�(� − n) objects
(bottom right). Thus,Hn,�,� read as

Hn,�,� =
(
P

�n
� 0
0 R

)
,
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whereR is some permutation matrix of order�(� − n) × �(� − n), which will be
specified later. Thus, we obtain

Hn,�,� · (g1h1 g2h1 . . . g�h1 g1h2 . . . g�h� )
T

=
(
P

�n
� 0

0 R

)
· (g1h1 g2h1 . . . g�h1 g1h2 . . . g�h� )

T

= (g1h1 g1h2 . . . g�hn . . . )T ,

where the former part of�n elements equalsG ⊗ H and the remaining�(� − n)

elements are some permutation of thegihj ’s, for 1� i�� andn+ 1�j��.
This completes our construction and defines

�(G⊗H) = (
Hn,�,� · P ��

�
) · (�(G)⊗ �(H)) .

(b) If G andH evaluate to square matrices of orderm × m andn × n, respectively,

then it is easy to verify that pre-multiplying�(G)⊗ �(H) byHn,�,� · P ��
� reorders

the rows and that we can do the same job with the columns by post-multiplying

with
(
Hn,�,� · P ��

�
)T
, where� and� are defined as in the previous case. Therefore,

�(G⊗H) is defined as

�(G⊗H) = (
Hn,�,� · P ��

�
) · (�(G)⊗ �(H)) · (Hn,�,� · P ��

�
)T
.

Observe, that the key to these definitions is that we have some freedom in defining
�(G⊗ H), i.e., in fact, choosing it among many candidates, and that we will buildHn,�,�
as if it were the padded version of a smaller matrix. Before we concentrate onHn,�,�, we
prove thatmatrixP ��

� obeysasum-free tensor formuladescription.By thestridepermutation
identities

P �mnmn = P �mnm · P �mnn and P �mnn = (P �nn ⊗ Im) · (I� ⊗ Pmnn ),

which can be found in[33], one immediately observes, that

P
��
� = (

P
��
2

)�
and since�� is a power of two, we find

P
��
2 =

(
P

��/2
2 ⊗ I2

)
·
(
I��/4 ⊗ P 4

2

)
,

if ���4. This yields a array-like sum-free tensor formula for the matrixP
��
� with atomic

sub-formulasI2 andP 4
2 . Now we are ready to concentrate onHn,�,�. We distinguish two

cases, depending onG andH :
(a) If bothG andH are atomic formulas, then we work ad hoc setting� = �(m), � = �(n),

and define

Hn,�,� =
(
P

�n
� 0

0 I�(�−n)

)
,

where�(n) denotes the smallest power of two greater than or equal ton.
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(b) Otherwise, we use our freedom to choose the lower right block inHn,�,� to write it as
thekth power of some padded matrix�(P �n

2 ) of order�� × ��, i.e.,

Hn,�,� = (
�(P �n

2 )
)k
,

sinceP �n
� = (P

�n
2 )k by the stride permutation identities.

In the forthcoming, we use the following facts for defining padded matrices: IfAand
B are square matrices having the same size, then we can set�(A · B) = �(A) · �(B),
and ifB is its own padded version, i.e.,B = �(B), thenwe can set�(A⊗B) = �(A)⊗B.

Next by the stride permutation identities again, and our freedom to choose the
padding, we write

�(P �n
2 ) = �(P 2n

2 ⊗ I�/2) · �(In ⊗ P
�
2 ),

which simplifies to

I =
(
�(P 2n

2 )⊗ I�/2

)
· (�(In)⊗ P

�
2

)
.

For �(In) the obvious choice is�(In) = I�. Note, thatI� = I⊗�
2 .

The sum-free tensor formula of order 2� × 2� for �(P 2n
2 ) is obtained as follows:

Observe, thatn can be expressed in polytime asn = n1 · n2 . . . ns , where eachni is the
row or column dimension of some atomic sub-formula ofF . Expressibility ofn in this
way can be readily verified by induction on the tensor formulaF . Thus, we can write
n = s · t , wheret is a row or column dimension of a atomic sub-formula. Now by the
stride permutation identities we can set

�(P 2n
2 ) = �(P 2s

2 ⊗ It ) · �(Is ⊗ P 2t
2 ),

since the unpaddedmatrices involved in themultiplicationmust be of same size in order
to be compatible. Let� = 	
 with 
 = �(t). Dealing with the above factors separately
yields

�(P 2s
2 ⊗ It ) =

(
Ht,2	,
 · P 2	





)
·
(
�(P 2s

2 )⊗ �(It )
)

·
(
Ht,2	,
 · P 2	





)T

by the general padding process; choosing�(It ) = I
, which implies that�(P 2s
2 ) must

be of order 2	×2	, results in a sum-free tensor formula for the first factor. Meanwhile,
the second factor reads as

�(Is ⊗ P 2t
2 ) =

(
H2t,	,2
 · P 2	


	


)
·
(
�(Is)⊗ �(P 2t

2 )
)

·
(
H2t,	,2
 · P 2	


	


)T
,

where we set�(Is) = I	, which implies that�(P 2t
2 ) is of order 2
 × 2
.

This completes the description of the recursive construction forHn,�,�, which can be
done in polynomial time, and shows that the matrix under consideration has a sum-free
tensor formula implementation.
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Thus, we have shown the stated claim on the transformation of an arbitrary (orthogonal)
array-like formulaF to a (orthogonal) array-like formula having only atomic sub-formulas
whose orders are power of two such that the value ofF appears in the upper left corner of
the constructed tensor formula.�

As an immediate consequence of Theorem10 and Lemma 11 we obtain the following
theorem, which is the main result of this subsection.

Theorem 12. Let F be a(orthogonal) array-like sum-free tensor formula F of ordern× 1
over semiringS. Then there is a polytime computable function, which given the tensor
formula F, computes a(reversible) gate arrayCF over S operating on m wires, with
n�2m, and an input|�F 〉 (with 〈�F |�F 〉 = 1), such that

|�F 〉 =
(
valn,1S (F )

(0)2m−nT

)
,

if gate arrayCF maps|�F 〉 to vector|�F 〉, and |�F 〉 = val2
m,1

S (dT
F ) for some sum-free

tensor formuladF .

6. Complexity results for sum-free tensor formulas

In this section we prove completeness results on variants of the partial trace problem for
orthogonal array-like sum-free tensor formulas. These variants are defined as follows:

Definition 13. Let S be a semiring.
(1) Theone partial trace problemover semiringS is the set of all tensor formulasF of

ordern× 1 together with a natural numberk, which is a power of two, given in binary,
for which thekth partial trace of valn,nS (F · FT) equals 1.

(2) Thenon-zero partial trace problemover semiringS is the set of all tensor formulas
F of ordern × 1 together with a natural numberk, which is a power of two, given in
binary, for which thekth partial trace of valn,nS (F · FT) is non-zero.

In order to obtain our completeness results we have to deal with promise versions of the
above defined problems. Moreover, we also have to introduce promise complexity classes.
Observe, that PP is a “syntactic” class, since acceptance is defined by simply counting

the number of accepting paths, while BPP is a “semantic” class, i.e., for a non-deterministic
machine to define a language in BPP, it must have the property that for all inputs one
of the two outcomes has a clear majority. This property is not obvious how to check.
Thus, it is convenient to introduce the notion of promise problems and promise complexity
classes[12,31].Apromise problemis a formulation of a partial decision problem and can be
specified in the form “R(x)given the promiseQ(x)?,”whereQandRare predicates.That is,
on inputx, an algorithm solving a promise problem(Q,R) has to correctly decide property
R(x), if the promiseQ(x) ismet; otherwise, it can give anarbitrary answer.More formally, a
languageL is said to be a solution to(Q,R), wheneverx ∈ Q implies thatx ∈ R if and only
if x ∈ L. In particular, setR is the unique solution to(�∗, R). Thus, the promise problem
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(�∗, R) is identified with the setR. Now we are ready to extend the class BPP as follows: a
promise problem(Q,R) belongs to pr-BPP if and only if there is a non-deterministic Turing
machine, such that ifx ∈ Q, then either the number of accepting or rejecting paths has
clear majority, and forx ∈ Q, the wordx is inR if and only if the Turing machine accepts
with clear majority. Observe, that(�∗, L) is in pr-BPP if and only ifL is in BPP. We can
similarly define the generalized class pr-BQP in terms of promise problems. Finally, our
reductions are polytime many-one reductions, and we say that a promise problem(Q,R)

is uniformly many-one reducible in polytime to a promise problem(S, T ), if there exists
a partial polytime computable functionf : { x ∈ �∗ | Q(x) } → �∗, such that for every
solutionA of (S, T ), the setB defined byB(x) = A(f (x)) is a solution of(Q,R).
The promise version of the one partial trace and non-zero partial trace problem restricted

to tensor formulas of ordern×1 such that thekth partial trace of the matrix valn,nS (F ·FT)

evaluates to either 0 or 1, will be called the 0–1-promisein the forthcoming. Moreover, we
refer to the promise classes associated with P and EQP, respectively, as pr-P and pr-EQP,
respectively. Then the following first main theorem of this section reads as follows.

Theorem 14. (1)The0–1-promise version of the onepartial trace problemover the positive
rationalsQ+ (rationalsQ, respectively), restricted to the domain of orthogonal array-like
sum-free tensor formulas, is complete forpr-P (pr-EQP,respectively) under polytimemany-
one reductions.
(2) The non-zero partial problem over the positive rationalsQ+ (rationalsQ, respec-

tively), restricted to the domain of orthogonal array-like sum-free tensor formulas, is com-
plete forNP (NQP,respectively) under polytime many-one reductions.

Proof. We only prove the first statement, since the second one can be shown by similar
arguments. The hardness of the 0–1-promise one partial trace problem on orthogonal array-
like sum-free tensor formulas is shown by a generic reduction from (pr-EQP, respectively).
Using Theorem2, we start with am-level reversible gate arrayC over the positive rationals
working onnwires number from 1 ton, whose accepting subspace is defined by setting the
first bit to |1〉. Now using Lemma 8 we build fromC an equivalent tensor formulaFC in
polytime. Meanwhile we define for the gate array’s input bitsx1 up toxn a tensor product
dx = ⊗n

i=1 e
2
1+xi of order 1× 2n of n unit row vectorse2i each of order 1× 2. By Lemma

8 it is easy to see that the first 2n−1 entries along the diagonal of

val2
n,2n

Q+ ((FC · dT
x ) · (FC · dT

x ))

add up to the value offC(x), which is the probability that the gate array’s output is projected
onto the accepting subspace. The original gate array’s input is accepted if and only if this
partial trace is exactly one, by which acceptance byC is defined. Scrutiny of the reduction
shows that the constraint onfC(x) is transported intact from the description ofC andx to
the partial trace orthogonal array-like sum-free tensor formula problem overQ+ instance
FC · dT

x .
In the other direction, we use Lemma11 and Theorem 10 to translate an instance〈F,2k〉

of the partial trace problem variant under consideration into the description of a reversible
gate arrayCF overm bits, wherem�n, if the order ofF equals 2n × 1, and of its input
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|�〉; the 2kth partial trace of

val2
m,2m

Q+ (F · FT)

represents the probability that the output bits of the gate arrayCF be projected onto the
direct sum of the dimension-1 subspaces generated by|0〉 = |0 . . .00〉, |1〉 = |0 . . .01〉,
|2〉 = |0 . . .10〉,… , and|2k−1〉. The promise on the partial trace is transported unmodified
from the input tensor formula to the reversible gate array.�

In the remainder of this section we define meaningful problems, which capture PP,
pr-BPP, and pr-BQP. Recall, that a tensor formulaF is called orthogonal if and only if’
all sub-formulas ofF evaluate to orthogonal square matrices or vectors whose�2-norm
equals 1.

Definition 15. Let S be either the commutative semiring of positive rationalsQ+ or the
field of rationalsQ. Themajority partial trace problemover semiringS is the set of all
orthogonal tensor formulasF of ordern × 1 together with a natural numberk given in
binary, for which thekth partial trace of valn,nS (F · FT) is superior to12.

As already mentioned, the classes BPP and BQP are definedvia a semantic condition.
Thus, we need a promise version of the majority partial trace problem, which captures
the semantic condition in order to obtain completeness result. LetS be eitherQ+ or Q.
Restricting the majority partial trace problem to orthogonal tensor formulas of ordern× 1
such that the (partial) trace of valn,n

S (F ·FT), belongs to the interval[0, 13]∪[23,1], is called
thestrict majority partial trace problem. Now we are ready to prove the following theorem.

Theorem 16. (1)The majority partial trace problem over both, the positive rationalsQ+
and rationalsQ in general, restricted to thedomain of orthogonal array-like sum-free tensor
formulas is complete forPPunder polytime many-one reductions.
(2)The strict majority partial trace problem over the positive rationalsQ+ (rationalsQ,

respectively), restricted to the domain of orthogonal array-like sum-free tensor formulas is
complete forpr-BPP (pr-BQP,respectively) under polytime many-one reductions.

Proof. We only prove the second statement. For the first statement, observe, that PP equals
its quantum counterpart as discussed after Theorem2. The proof of the second assertion
parallels that of Theorem 14. Hardness follows from Theorem 2 and Lemma 8, while
containment is shown with Theorem 10, and the fact, that the promise on the partial trace
problem is transported unmodified from the input tensor formula to the reversible gate
array. �

We summarize our results on variants of the partial trace problem over the positive
rationals or rationals in general in Table 3. It is worth mentioning that both the one partial
trace and non-zero partial trace problems over the Boolean semiringB, restricted to the
domain of orthogonal array-like sum-free tensor formulas, is complete for P under polytime
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Table 3
Completeness results for the sum-free case summarized

Semiring One PTP with 0–1-promise Non-zero PTP Majority PTP Strict maj. PTP

Partial trace problem(PTP) with appropriate restricted domain
B P P – –
Q+ pr-P NP PP pr-BPP
Q pr-EQP NQP PP pr-BQP

many-one reductions. Observe, that the 0–1-promise is ridiculous in the case of Booleans
B, since by definition the promise condition is met.

7. Complexity results for tensor formulas in general

We discuss the partial trace evaluation problem and its variants for tensor formulas in
general. In this way, we obtain completeness results for complexity classes like, e.g.,⊕P,
NP, C=P, and US, in more detail—a formal definition of these classes is given below. The
material presented here is not essential for the further understanding of probabilistic and
quantum computation, and therefore may safely be skipped by those not interested in this
aspect. A direct application of Lemma17 will be the construction of complete problems for
the above mentioned classes.
To understand the statement of Lemma 17 below, keep in mind a situation in which it is

required to determine the trace of sayA⊕ B ⊕ C ⊕D, whereA, B, C, andD are�n× �n

matrices and⊕ : M
k,k
S × M

k,k
S → M

2k,2k
S is the direct sum of matrices and is defined as

A⊕ B =
(
A 0
0 B

)

for A,B ∈ M
k,k
S , which generalizes to an arbitrary number of matrices in the domain.

Lemma17 describes a preliminary step which uses tensors to produce a large block matrix
havingn× n sub-matrices compatible toA, B,C, andD on its main diagonal, i.e., the new
matrix has exactly the same diagonal elements asA⊕ B ⊕ C ⊕D, but in permuted order.
This particular application of Lemma 17 would require the parameterm = 4.

Lemma 17. Let a sequenceA = (Ai),with1� i�m, of �n× �nmatrices over a semiring
S be given. Consider the�mn×�mnmatrixA = ⊕m

i=1 Ai .Then there is a polytimeTuring
machine which computes on inputA, a tensor formulaFm,A evaluating to the�mn× �mn

matrixB = ⊕�m
i=1 Bi , whereB = (Bi) with 1� i��m, of n× n matrices satisfying

diag(B) = (P �mn� )−1 · diag(A) · P �mn� .

Herediag(A) denotes the matrix, which consists of the diagonal entries of A and is zero
elsewhere. In other words,matrix B has the exactly the same diagonal elements as matrix
A, but in permuted order.
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Proof. First, we show how the diagonal elements of an arbitrary square matrixA and
P−1·A·P , for apermutationmatrixPsuch that thecorrespondingmultiplicationoperation is
defined, are related to each other. Observe, thatP−1 = PT sinceP is a permutation matrix.
Assume that(P−1)i,j = (P )j,i = 1 for some 1� i, j�n. Then it is easily seen that

(
P−1 · A · P

)
i,i

=
n∑
j=1

n∑
k=1

(
P−1

)
i,j

· (A)j,k · (P )k,i = (A)j,j .

Thus,P−1 · diag(A) · P = diag(P−1 · A · P) follows.
Next considerA = ⊕m

i=1Ai . To simplify presentation, let us call a matrix of the above
given form am-uniform block diagonalmatrix. Now consider the tensor formula(P �mn� )−1 ·
A · (P �mn� ), which results in a matrix

B1,1 . . . B1,�
...

. . .
...

B�,1 . . . B�,�


 ,

where theBi,j ’s arem-uniform block diagonal matrices of ordermn×mn. This is because
pre- and post-multiplyingA by (P �mn� )−1 andP �mn� , respectively, rearranges the rows and
column in� stride fashion. Thus, from every sub-matrixAi exactlyn rows andn columns
are taken to form a single stride. Therefore theBi,j ’s arem-uniform block diagonal matrices
of appropriate order.
Then

Fm,A =
�∑
i=1

(
D�i ⊗ Imn

)
·

B1,1 . . . B1,�

...
. . .

...

B�,1 . . . B�,�


 ·

(
D�i ⊗ Imn

)T

equals the�m-uniform block diagonal matrix
⊕�

i=1 Bi,i of order�mn× �mn, whereDni is
the ordern× n “dot matrix” having one in position(i, i) and zero elsewhere. Moreover, by
our previous investigation on the effect of permutation matrices to the diagonal elements of
a matrix we immediately conclude that

diag(B) = (P �mn� )−1 · diag(A) · P �mn�

holds, whereB = val�mn,�mnS (Fm,A).
Finally, one observes, that the tensor formulaFm,A is polytime constructible from the

given input using the identities on stride permutations and observing thatImn = Im ⊗ In.
This proves this statement.�

As an application we construct complete problems for the above mentioned complexity
classes, which are defined as follows: The corresponding counting version of NP is denoted
by #P and is the class of functionsf , such that there is amachineM with the same resources
as the underlying base class, such thatf (x) equals the number of accepting computations of
M onx. The decision class NP is defined onBooleancomputation models, in that they rely
on the mereexistenceof accepting computations. If existence is replaced by the predicate
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“there is anodd number ofaccepting computations,” we obtain the parity version[30]
⊕P and the class MODq -P, which is similarly defined with respect to counting modulo
q. More formally,⊕P is the class of sets of type{ x | f (x) �= 0 (mod 2) } for some
f ∈ #P. Moreover, consider the complexity class [13]GapP = { f − g | f, g ∈ #P}
as a natural generalization of #P. Additionally, we will make use of some further classes,
namely consider the chains

co-NP⊆ US⊆ C=P and UP⊆ SPP= co-SPP⊆ C=P∩ co-C=P.

Here US is the class of sets of type{ x | f (x) = 1} for somef ∈ #P and is calledunique
polytime[8]. Moreover, UP denotes Valiant’s class [34], which is the set of all languages
whose characteristic function belongs to #P and SPP is a generalization of UP and is
defined to be the set of languages whose characteristic function belongs toGapP, hence is
the difference of two #P functions [13,28]. Observe, that SPP⊆ MODq -P, for anyq; thus,
in particular SPP⊆ ⊕P. Recall that C=P is the class of sets of type{ x | f (x) = g(x) }, for
somef, g ∈ #P. Finally, the promise counterparts of the classes UP and SPP, respectively,
are intuitively defined and denoted by pr-UP and pr-SPP, respectively.
Before we state the main theorem of this section, we need the following result, which

can be deduced from Damm et al. [9], and Beaudry and Holzer [6], respectively.

Theorem 18. The one problem on scalar tensor formulas over semiringS is the set of all
tensor formulas of order1× 1 for whichval1,1S (F ) = 1.The one problem for scalar tensor
formulas is complete forNP, ⊕P, US,andC=P, respectively, with respect to polytime
many-one reductions in case of BooleansB, the fieldF2, the naturalsN, and the integers
Z, respectively.

Now we are ready to state our first main theorem.

Theorem 19. (1) The one partial trace problem is complete forNP,⊕P, US, and C=P,
respectively,with respect to polytime many-one reductions in case of BooleansB, the field
F2, the naturalsN, and the integersZ, respectively.
(2)Thenon-zero partial trace problem is complete forNP,⊕P,NP,and the classco-C=P,

respectively,with respect to polytime many-one reductions in case of BooleansB, the field
F2, the naturalsN, and the integersZ, respectively.

Proof. We only prove the first statement, since the second one can be shown by similar
arguments. The containment of the one partial trace problem immediately follows from
Lemma17 and the following reasoning. LetF be ann× 1 order instance of the one partial
trace problem. ThenF · FT is a tensor formula again, and can be reduced in sequence to a
diagonal tensor formulaG whose matrix valn,nS (G) satisfies the condition that the diagonal

elements are exactly those of valn,n
S (F · FT)—even in the same order. To this end, we

use Lemma 17 several times, together with appropriately constructed stride permutation
matrices in order to keep the sequence of the diagonal elements. Finally, we reduceG to a
scalar tensor formula, i.e., a tensor formula of order 1× 1, by pre- and post-multiplyingG
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by f nk and its transpose, respectively, giving

(
f nk
) ·G · (f nk )T

as output, wheref nk denotes the row vector of lengthnwhose firstk entries equals 1 and is
0 elsewhere. Since the vectorf nk may be of exponential length we use a similar technique
as in the construction of unit vectorsenk presented by Damm et al.[9]. The main idea is that
n can be expressed in polytime asn = m1 ·m2 . . . mt , where eachmr is the row dimension
of some atomic sub-formula ofG. Expressibility ofn in this way is readily verified by
induction onG. But then, vectorf nk can be expressed as a finite sum in polytime. This
shows that the one partial trace problem polytime many-one reduces to a scalar tensor
formula. Thus, containment in NP,⊕P, US, and C=P, respectively, immediately follows
in case of BooleansB, the fieldF2, the naturalsN, and the integersZ, respectively, by
Theorem 18.
For the hardness part we argue as follows:Again by Theorem 18 the classes NP,⊕P, US,

and C=P, respectively, reduce to a scalar tensor formula over the BooleansB, the fieldF2,
the naturalsN, and the integersC=P, respectively, such thatw is inL if and only if the scalar
tensor formulaF evaluates to 1 (in each semiring under consideration). DeemingF to be an
instance of the one partial trace problem together with the natural number 1 shows hardness
in all considered cases—in case of integers we additionally need the closure of C=P under
union, which was shown by Gundermann et al. [20]. This completes this proof.�

The reader can verify that the above given proof can be rewritten in terms of the 0–1-
promise version. Meanwhile the complexity of the one partial trace and the non-zero partial
trace problem is obtained with a straightforward application of the above given argument.
Thus, we state the below given corollary without proof. Observe, that the 0–1-promise
is ridiculous in the case of BooleansB and the fieldF2, since by definition the promise
condition is met.

Corollary 20. The0–1-promise versions of the below mentioned problems are complete
w.r.t. polytime many-one reductions: Both the one partial trace problem and the non-zero
partial trace problem are complete forNP,⊕P, pr-UP,andpr-SPP,respectively, in case of
BooleansB, the fieldF2, the naturalsN, and the integersZ, respectively.

We summarize our results on the computational complexity of the one partial trace and
non-zero trace problem and their promise versions in Table4.

8. Conclusions

Through the study of gate arrays, we have developed a common algebraic description for
polytime complexity classes, where the choice of the semiring (plus a possible promise)
determines the complexity class. In this way, characterizations of(pr-)P, NP,⊕P, pr-BPP
and their quantum counterparts pr-EQP, NQP, and pr-BQP are obtained. In particular, for
the inclusion BPP⊆ BQP, the classical model of polytime probabilistic computation turns
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Table 4
Completeness results for the general case summarized

Semiring 0–1-promise Unrestricted
one PTP non-zero PTP one PTP non-zero PTP

Partial trace problem(PTP)
B NP NP NP NP
F2 ⊕P ⊕P ⊕P ⊕P
N pr-UP pr-UP US NP
Z pr-SPP pr-SPP C=P co-C=P= NQP

out to be a special case of polytime quantum computation where interference between
computations is ruled out.
The definitions of variants of the partial trace problems on (sum-free) tensor formulas al-

lowed us to obtain complete problems for the abovementioned polytime complexity classes
in a very natural way. Moreover, by giving up sum-freeness, classes like⊕P, NP, C=P, its
complement co-C=P = NQP, the promise version of Valiant’s class UP, its generaliza-
tion promise SPP, and unique polytime US, were captured. It would be interesting, to see
whether extending our work to other semirings would yield characterizations for further
complexity classes.
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