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Abstract

Through the study of gate arrays we develop a unified framework to deal with probabilistic and
guantum computations, where the former is shown to be a natural special case of the latter. On this
basis we show how to encode a probabilistic or quantum gate array into a sum-free tensor formula
which satisfies the conditions of the partial trace problem, and vice-versa; that is, given a tensor for-
mula F of ordern x 1 over a semiring” plus a positive integek, deciding whether thith partial
trace of the matrix v&}:” (F - F7) fulfills a certain property. We use this to show that a certain promise
version of the sum-free partial trace problem is complete for the class pr- BPP (promise BPP) for
formulas over the semiringd ™, +, -) of the positive rational numbers, for pr-BQP (promise BQP) in
the case of formulas defined over the figltit, +, -), and if the promise is given up, then completeness
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for PP is shown, regardless whether tensor formulas over positive rationals or rationals in general
are used. This suggests that the difference between probabilistic and quantum polytime computers
may ultimately lie in the possibility, in the latter case, of having destructive interference between
computations occurring in parallel. Moreover, by considering variants of this problem, classes like
@®P, NP, C_P, its complement co-CP, the promise version of Valiant's class UP, its generalization
promise SPP, and unique polytime US can be characterized by carrying the problem properties and
the underlying semiring.

© 2005 Published by Elsevier B.V.

1. Introduction

The “algebraic” approach in the theory of computational complexity consists in charac-
terizing complexity classes within unified frameworks built around a computational model
or problem involving an algebraic structure (usually finite or finitely generated) as the main
parameter. In this way, various complexity classes are seen to share the same definition, up
to the choice of the underlying algebra. Successful examples of this approach include the
description of NC and its subclasses Aand ACC in terms of polynomial-size programs
over finite monoid$26], and analogous results for PSPACE, the polynomial hierarchy and
the polytime mod-counting classes, through the use of polytime leaf languages [22]. A more
recent example is the complexity of problems whose input is a tensor formula, i.e., a fully
parenthesized expression where the inputs are matrices (given in full) over some finitely
generated algebra and the allowed operations are matrix addition, multiplication, and tensor
product, also known as outer, or direct, or Kronecker product. Evaluating tensor formulas
with explicit tensor entries is shown by Damm et al. [9] to be completet®yfor NP, and
for #P as the semiring varies. Recently also other common sense computational problems
on tensor formulas and tensor circuits were analyzed by Beaudry and Holzer [6]. Tensor
formulas are a compact way of specifying very large matrices. As such, they immediately
find a potential application in the description of the behavior of circuits, be they classical
Boolean, arithmetic (tensor formulas over the appropriate semiring) or quantum (formulas
over the complex field, or an adequately chosen sub-semiring thereof).

In this paper we formalize and confirm this intuition, that basic tensor calculus not only
captures natural complexity classes in simple ways, but also yields a simpler and unified
view on classical probabilistic and quantum computation, which gives probabilistic and
guantum computations the exact same definition, up to the underlying algebra. Apart from
offering a first application of the algebraic approach to quantum computing, our paper
thus reasserts the point made by Fortnow [15], that for the classes BPP and BQP, the
jump from classical to quantum polynomial-time computation consists in allowing negative
matrix entries for the evolution operators, which means that different computations done in
parallel may interfere destructively. Based on this unified framework, we define a meaningful
computational problem on tensor formula, calledphaetial trace tensor formula problem
which is fundamental to our studies, and allows us to capture important complexity classes.
Our precise characterizations are as follows:

e We present probabilistic computation as a natural special case of quantum computation
using the unified framework on gate arrays, instead of presenting quantum as a more or
less artificial extension of probabilistic computation.
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e The partial tracesum-freetensor formula problem enables us to capture the significant
complexity classegr-)P (promise P), NP, pr-BPP (promise BPP), and PP and some of
their quantum counterparts pr-EQP (promise EQP), NQP, and pr-BQP (promise BQP),
by showing completeness results of the problem under consideration.

e By bringing back sums into tensor formulas, we obtain completeness statements for
further complexity classes likeP, NP, C_P, its complement co-CP, Valiant’s class
pr-UP (promise UP), its generalization pr-SPP (promise SPP), and unique polytime US.

Some of these classes are “semantic” classes, i.e., the underlying machine must obey a

property for all inputs, which is not obvious to check, or even undecidable. An example

would be UP, since for a non-deterministic machine to define a language in UP, it must have
the property that for all inputs either exactly one accepting path exists or none. Therefore,
the obtained completeness results are subject to a certain promise.

The paper is organized as follows: In the next section we introduce the complexity classes
needed in later sections and the basics on semirings. In S&tinprovide the reader

with the necessary background on deterministic, probabilistic, and quantum computation

and develop our unified view of all these computations based on gate arrays. Then in Section

4 we introduce the terminology and basic parsing techniques for tensor formulas. Section

5 shows how to transform a gate array into a sum-free tensor formulas of special type and

vice versa, which then is applied in Section 6 to prove the main results of the papers. Then

in Section 7 we consider the unrestricted partial trace tensor formula problem, and finally,
in the last section, we conclude and discuss, related results.

2. Definitions

We use standard notation from computational complexity [2,19,29]. In particular we
recall the inclusion chains:

PC BPPC PPO> NP and EQR= BQPC PP2> NQP.

Here P (NP, respectively) denotes the set of problems solvable by deterministic (non-
deterministic) Turing machines in polytime, and the probabilistic class PP (BPP, respec-
tively) is the set of all languages accepted by non-deterministic Turing machine in polytime
with majority (strict majority, respectively). Moreover, EQP, NQP, and BQP denote the
quantum analog of P, NP, and BPP, respectively. In the sequel, whenever we simultane-
ously deal with probabilism and quantum, we use the notations and vocabulary from the
guantum case, in order to make the text easier to read.

A semiring[16,23] is a tuplgS, +, -) with {0, 1} € S and two binary operations, - :
S x § — S (sum and product), such thg, +, 0) is a commutative monoids, -, 1) isa
monoid, multiplication distributes over sum, i.e.,

a-b+c)=a-b+a-c¢c and (a+b)-c=a-c+b-c,

for everya, b, andcin §,and 0a = a-0 = O for everyain S. A semiringS is commutative
ifand only ifa - b = b - a for everya andb, it is finitely generatedf there is a finite set
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G C S generating all ofS by summation, and isang if and only if (S, +, 0) is a group.

The special choice df has no influence on the complexity of problems we study in this
paper. In this paper we consider the following semirings, which are finitely representable,
i.e., every element fror§ can be encoded and easily manipulated over a finite alphabet: the
field of rationals(Q, +, -) and the commutative semiring of positive ration@ls", +, -).
Moreover, we refer also to the field of complex numb@es+, ).

Let Mge denote the set of athatricesoverS of orderk x ¢. For a matrixAin Mlge let
I(A) = [k] x [£], where[k] denotes the s€il, 2, .. ., k}. The(i, j)th entry ofAis denoted
bya; ; or(A); j, the transpose &by AT, and |ts inverse, ik is an invertible square matrix,
by A1, A square matrixA over the complex numbers isitary, if and only if AT = A—1,
whereA™ denotes the conjugate transposégénd for a matriXA with rational entries thls
translates intodT = A~1, which means thaA is orthogonal Observe, that an orthogonal
matrix which contains only non-negative rational entries is in fact a permutation matrix.
Thetrace of an ordem x n square matriXd, denoted by tragel), equals the sum of its
diagonal elements, i.e.,

tracgA) = Z (A)ii.

For k >0, thekth partial traceof A, for short tracg(A), is the sum of its firsk diagonal
elements, counting downwards from the upper left corner. For completenksxdéeds
the order of the matri®, then thekth partial trace coincides with the trace/f

Scalar multiplication, addition and multiplication of matrices form the basics of matrix
calculus and are defined in the usual way. Scalar multiplication, addition, and multiplication
of matrices over a semiring are compatible with transposition, @@e.A)" = a - AT,
(A-a)T =AT.a,(A+B)T =AT+BT,and(A - B)T = BT-AT. Furthermore, |AandB
are invertible square matrices having the mveﬂse’sandB 1then(A-B)1=B"1.A"1
Additionally we consider théensor product : Mg" x Ma" — M of matrices,
also known as Kronecker produl], outer product, or direct product, which is defined
as follows. ForA € M%‘ andB € M2" let A ® B € My be defined as

a11-B ... a1y B
A®B: . . .
ar1-B ... axy-B

Hence
(A & B)i,j = (A)q,r . (B)s.t,

wherei = k-(¢g—1)+sandj = £-(r —1) +1. For then-folded iteratiorA @ AR - - - ® A
we useA®” as a shorthand notation; defin€° to be the scalar 1.

The main properties of the Kronecker product of matrices are gathered in the follow-
ing identities. These properties are class[@8] and will be restated for reference only.
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They hold true over arbitrary semirings, unless otherwise stated, whenever the corresponding
operations are defined:

AR(BRC)=(A®B)®C,
A+B)®C+D)=ARC+ARD+B®C+BR®D,
and
(A B)- (C®D)=(A-C)®(B-D),

if the underlying semiring is commutative. Moreover, for arbitrary semirings the last equa-
tion also holds, ifB or C are zero-one matrices. The ultimate equation is probably the
most important one, since it relates ordinary and Kronecker product of matrices. More-
over,a® A =a-AandA®a = A-aif aisascalarfA® B)" = AT ® BT, and
(A® B)~t = A~1®@ B~1if AandB are invertible square matrices having the inverse$
andB~1, respectively.

Next we define stride permutation matrices, which play a central role in tensor calculus
over commutative semirings. Tien-point stride n permutatiomatrix 2" in M'g""" is
defined by Ledermanj24] as

T T
P (ereer) =(dee)

wheree!" € Mi:m ande;? € M}é” are row unit vectors of appropriate length. In particular,

Py = P! = I,, where], is the ordem identity matrix. In other words, matrix,""
permutes the elements of a zero-one vector of lengttwith stride distancen, i.e., the
matrix vector product?*” - x takes a “card deckk, splits the card deck intm piles of
lengthn each, and then takes one card from each pile in turn until the deck is reassembled.
If the underlying semirings is commutative, then stride permutations obey the following
commutation theorerf24]

P (A® B)=(B® A)- P,

whereA € Mi‘g‘e andB € Mg’”. Thus, over commutative semirings one can reverse the
order of a Kronecker product ® B into B ® A by post-multiplying the equation given
above on both sides with the appropriate inverse of a stride permutation. Very importantly,
looking more closely, it reveals that the commutation theorem holds also true over arbitrary
semirings ifA or B are zero-one matrices.

The main identities of stride permutations are listed bd®8{:

Prﬁr;m — Prf;mn . P’fmn
and
P = (P @ I) - (I ® PJ™),
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wherel, denotes the identity matrix of orderx n. Recall also, that the inverse 8f"" and
in general for every permutation matfexists and equals its transposed, iRl = PT.

3. Background on gate arrays and complexity

In this section we introduce gate arrays in order to handle the two types of computations,
i.e., probabilistic and quantum. The woeilcuit is reserved for the traditional idea of an
acyclic network with a unique output bit, and we use the wgate arrayto describe those
computational networks, which satisfy the below given requirements.

It is useful to think of gate arrays as natural extensions of classical leveled Boolean
circuits. The usual notion of depth and size on Boolean circuits naturally carries over to
gate arrays. These consist of gates interconnected without f&nevdeedback, by wires.

Each wire represents a path of a single bit in time or space, forward from left to right, and it
can be described by a state in a two-dimensional space with orthonormal(asisl|1).

The gates have the same number of inputs and outputs, and a dateafs operates on

the set ok-bit vectors mapping each of thé possibilities of input values to a combination

of output values, i.e., it can be specified by a square matrix over a certain sefivimgch
describes its action on the specified entries and may obey certain properties. Without loss
of generality we may assume, that each gate acts on neighboring wires. This requirement
can easily be achieved at the cost of inserting a quadratic number of extra levels of “swap”
gates, which interchange the values carried by two adjacent wires. Entries to the gate array
are either input bits or non-input bits also calkattilla bits. Thus, am-bit input to a gate

array over semiring can be seen as a formal sum of the form

o)=Y awlw), 1)

wef0,1)

whereua,, isin S and|@) may obey some additional properties, and gates act on certain bits
|0) and|1) of |¢) in the natural way. The vector of bits received as input by a gate array can
be regarded as a linear combinationiife) states Finally, at the end of the gate array the
decision whether the input is accepted or rejected is done by a particular observation on the
output vector, which is also of the form); Next we compare quantum and probabilistic
computation. We continue with the former one—a more detailed discussion can be found
in [4].

Quantum computation was originally defined by Deutsch [10] in terms of quantum Turing
machines: Here the data (qubits) handled by this machine are formally represented as a
vector whose complex components give the distribution of amplitudes for the probability
that the qubits be in a certain combination of values and each transition of the machine acts
as a unitary transformation on this vector. Later it was shown by Yao [36] that polytime
guantum Turing machines (and their inputs) can be encoded in deterministic polytime into
an equivalent quantum gate array, if one allows a small probability of error. In our general
view on gate arrays the properties of wires, gates, input and output vectors, and measurement

2 Fan-inand fan-out are electrical engineering terms which refer foittiag andbranchingof wires; sometimes
logical devices output wires with the same signal, hence providing broadcasting, and this is known as fan-out
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at the very end of the gate array read as follows: (1) Wires in a quantum gate array carry
qubits and they can be described by a state in a two-dimensional Hilbert space with basis
|0) and|1). Just as classical bit strings can represent the discrete states of arbitrary finite
dimensionality, so a length string of qubits can be used to represent quantum states in
any Hilbert space of dimensionality up t6.22) The action of &-input gate is a unitary
operation of the group/ (2¢) of 2¢ x 2* unitary matrices, i.e., a generalized rotation in a
Hilbert space of dimensiorf2The unitarity (orthogonality) property of the square matrices,
which describe the performance of the gates, implies reversibility, i.e., computations where
the input and output is uniquely retrievable from each other. In this way, it is always possible
to un-compute or reverse the computation. It has been sf@/h,25,32] that a small set

of one- and two-qubit gates suffices to build quantum arrays, in thdt-gopit gate can be
simulated by a gate array consisting of two-qubit gates, and the number thereof is at most
an exponential ifk. As two-qubit gates it suffices to take the controlled NOT-gate, which is
defined as

X = X,

y—xoy,

where @ is the two-input one-output XOR function. Moreover, the power of quantum
gate arrays remain unchanged if gates are restricted to implement unitary operations with
entries taken form a small set of rationals [1]. (3) The coefficieptsn vector |p) =

> wefo.1 %wlw) are callecamplitudesand they satisfy

> =1 2

we{0,1}?

Without loss of generality the input ancilla qubits are prepared to be in%am)) +11).
Assuming an even number of ancillae, we are back with the rationals since

2510/ +12) ® 25 (10) + [1) = § (100) + 0 + |10) + [12)). 3

Later, we will use a similar trick for probabilistic computations. (4) Finally, there is a
measurement done on the array’s output, which consists in projecting the output vector onto
a subspace, usually defined by setting a chosen subset of the quiitsttee accepting
subspace. If the qubits are numbered h,tthen ak-qubit accepting subset can be chosen

to be qubits 1 t, at the cost of inserting a quadratic number of extra swap gates. Thus,
the probability of acceptance on inputequals the 2h partial trace of the matrii)) (|,

where the input is mapped t¢) by the gate array under consideration.

As quantum classes, also probabilistic complexity classes are usually defined in terms
of Turing machines. Here the Turing machine picks one random bit at a time and acts
deterministically otherwisé. In fact, deterministic computations, or to be more precise
Boolean circuits, can be made reversible with little cost in efficiency [7], since there exists
a three-bit universal gate for reversible computations, that is, a gate which when applied in
succession to different triplets of bits in a gate array, could be used to simulate arbitrary

3When considering probabilistic Turing machines as Turing machines in which some transitions are random
choices among finitely many alternatives, the below given argument results in gate arrays, where the gates can be
described by stochastic matrices, the ofylynorm preserving linear mapping over the positive rationals.
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Table 1
Probabilistic and guantum computations on gate arrays compared
Probabilistic Quantum
Semiring QF Q (C, resp.)
Wires Bits|0) and|1) Qubits|0) and|1)
Gates Permutation Orthogonal
(Stochastic, resp.) (Unitary, resp.)
Vector entriesy, Probability Amplitude
Vectors of unit length in ... £1-norm £2-norm
Ancilla 09|0) + o1 1) 310) +11)) 5000+ 1)
Measurement op) = Y, o |w) >, % >, lowl?

reversible computations. This universal gate is called the Toffoli-gate, and is also known as
the double-controlled NOT- or controlled—controlled NOT-gate and its behaviour is

X — X,
y =y,
I (XxAYy) Dz,

whereg is the two-input one-output XOR function. One can easily prove that the Toffoli
gate is universal; by settirggo 1 at the input, the Toffoli gate produces the NAND function,
which is a two-input one-output universal gate for classical irreversible computation. Thus,
from a probabilistic Turing machine an equivalent circuit and in turn a gate array over
the positive rationals can be built, in which an appropriate number of random bits are fed
alongside the input bits. Whether the input belongs to the language specified by the Turing
machine is verified by counting those combinations of random bits, for which the output
bit takes value 1, assuming that all random bit combinations have equal length and are
equally likely. In this way, the constraints of a gate array read as follows: (1) Wires carry
bits |0) and|1). (2) Gates implement deterministic reversible computations, i.e., they carry
out permutation operations and thus can be described by matrices with 0—1 entries. (3) The
coefficientsy,, in vector|g) = Zwe{ogl}n oy |w) are calledorobabilitiesand they satisfy

> =1 4)

wef0,1)"

Moreover, input ancilla (probabilistic) bits are prepared to be equally likely, i.e., set to
%(|0> +11)). (4) The measurement at the end of the gate array consists in determining
the probability that the decision bits take some predefined values, usually| $gtabthe
output level. Thus, the probability of acceptance equals the sum of some the coefficients
oy, corresponding to the accepting subspace of the output vigictes Zwe{O,l}" O |w).
A comparison of probabilistic and quantum computation is shown in Thble

When restricting to rational numbers, the essential difference between probabilistic and
guantum computation lies in the way, the probability of acceptance is determined. In most
papers, quantum computation is presented as a natural extension of probabilistic computa-
tion. This is not convenient for us, therefore we go the other way around and want to explain
how to see probabilistic computation as a natural special case of quantum. In this respect, we
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Table 2

Probabilistic computations as a natural special case of quantum computation
Probabilistic Quantum

Semiring Qt Q

Wires Bits|0) and|1) Qubits|0) and|1)

Gates Orthogonal Orthogonal
Permutation

Vector entriesiy, Amplitude Amplitude

Vectors of unit length in ... £2-norm £2-norm

Ancilla 3=, 0.1y2 %wlw) 2(10) +(2))®? 2(10) +12))®?

Measurement ofy) = 3, o |w) >, lowl? >, lowl?

are already half the way towards this goal. Consider probabilistic gate arrays in more detail.
Since all the gates in the array do classical reversible computations they only permute the
different vector components without ever combining them, i.e., no interference ever takes
place along the array’s computation, so that it does not matter in terms of overall outcome,
whether the vector entries are probabilities represented as such or as amplitudes. However,
using amplitudes enables us to describe the measurement at the end of the computation as
in the quantum case, by determining the partial trace of a matrix. Nevertheless, we face the
problem, that the amplitudes compared to the probabilities in the original vector may not be
rational anymore. For instance, the amplitudeém@) +11)) are%2 for both|0) and|1).
As argued in the quantum case, when considering an even number of ancilla bits, we can
overcome this problem still staying rational—see EB]. This observation allows us to see
probabilistic computation as a natural special case of quantum computation as follows: (1)
Wires carry bitg0) and|1) and (2) gates are describable by orthogonal matrices over the
positive rationals. Itis elementary to verify that these are exactly the permutation matrices. In
other words, these gates are still classical reversible gates. (3) Instead of dealing with proba-
bilities we compute with amplitudes, which implies that the vepor= >, (0 1 %wlw)
preserveg,-norm, and the even number of ancilla bits are prepared to be equally likely,
which means, that they are sel%aﬂOO) + 101 + |10) + |11)). (4) The measurement at the
end of the gate array is done as in the case of quantum gate arrays. Our view on probabilistic
computation as a natural restriction of quantum computation is depicted in Table 2.

The above given discussion motivates and satisfies the following definition and
theorem.

Definition 1. Let S be the set of positive rational@™ or the set of rational§). Define
R, ACcSwithRNA=0andRU A C [0, 1]. A logspace (polytime) uniform family of
polynomial size gate arrays ov8rdetermines a languagdeas follows: Assume!t! — C
with an even number of ancilla bits, vectias) is built by inputw and appropriately set
ancilla bits, ande) +— [y) runningC on inputw. Then

w € Limplies fcw) € A
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and
w ¢ L implies fcw) € R,

where fc(,) denotes the probability thép) is projected onto the accepting subspace, i.e,
equals the partial trace ¢f) (/| restricted to the accepting subspace.

The clas€s(R, A) consists of all languagds C X* that can be accepted by gate arrays
overS satisfying the above property.

The following theorem is immediate by the previous discussion on quantum and proba-
bilistic computations. We state it without proof.

Theorem 2. (1) For the positive rationals we find
(@)Cq+(R, A) =Pif R =[0] andA = [1].
(b) Cg+ (R, A) = NPif R = [0] andA = (O, 1].
(c)Co+(R, A) = PPif R = [0, 3]andA = (3, 1].
(d)Cg+(R. A) = BPPif R = [0, 3]andA = (3. 1.
(2) For the rationals we find
(@)Co(R, A) = EQPif R =[0] and A = [1].
(b) Ca(R, A) = NQPif R = [0] and A = (O, 1].
(c)Ca(R, A) = PPif R = [0, 3] andA = 3, 1].
(d)Cq (R, A) = BQPif R = [0, 3]andA = [3, 1].

Concerning the above theorem, there are three points to mention: (1) Observe, that the
result on BPP (BQP, respectively) includes the constraint, that the cul%)dﬁrisolated,
i.e., the probability never falls inside the open inter(/éj %). Nevertheless classes PP,
BPP, and BQP can be redefined with a cutpoint other %18(12) The quantum analog to
PP is in fact no different than PP itself. We recall the simple argument, which leads to this
observation. An alternative characterization of PP reads as fol®}sA languagd. < ~*
belongs to PP if and only if there is@apP function f whose value on inpub is positive,
i.e., f(w) > 0if and only if w is in L. Now given a quantum gate array, which checks
membership ofv in L with unique accepting and rejecting configurations, summing all the
positive and negative contributions to the total amplitude for these configurations defines
four #P functions. The difference between the probabilities of acceptance and rejection by
this gate array is a quadratic polynomial in these four functions, which belongap®
by the closure of #P under finite sum and product. Thus, langlidges member of PP.
(3) Finally, it was shown by Fenner et al. [14] that N@Rco-C_P, where co- denotes the
complementation operation and.E is the class of sets of tyder | f(x) = g(x) }, for
somef, g € #P, which was introduced by Wagner [35].

4. Tensor formulas and problems

In this section we introduce tensor formulas over semirings and some basic techniques
to deal with them. Moreover, we define the partial trace problem, which is fundamental to
our studies.
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Definition 3. The tensoformulasover a semirings and theirorder are recursively defined
as follows:
(1) Every matrixF from r\\/ﬂg’ﬁ with entries fromS is a (@atomig tensor formula of order
k x L.
(2) If F andG are tensor formulas of ordérx ¢ andm x n, respectively, then
(@) (F + G) is atensor formula of orddr x £ if k = m andl = n.
(b) (F - G)is atensor formula of ordér x n if £ = m.
(c) (F ® G) is atensor formula of ordéim x ¢n.
(3) Nothing else is a tensor formula.
Let T 5 denote the set of all tensor formulas orand define?Tf‘s’[ C T, to be the set of
all tensor formulas of order x .

In this paper we only consider semiring elements whose value can be given with a
standard encoding over some finfie Hence, atomic tensor formulas, i.e., matrices, can
be string-encoded using list notation such @8 0 1][1 0 1]].” Non-atomic tensor formulas
can be encoded over the alphabet {0} UG U {[, 1, (,), -, +, ®}. Strings overX which
do not encode valid formulas are deemed to represent the trivial tensor formula 0 of order
1x1.

Let F be a tensor formula of ordet x n. Its size denoted F'|, is maxXm, n} and its
length L(F) is the number of symbols in its string representation. It is easy to show that
|F|<290@E) The upper bound is attained whéris an iterated tensor product.

Lemma 4. Testing whether a string encodes a valid tensor formula and, ifsmputing
its order, can be done in deterministic polytime

Proof. Let M be the Turing machine which, on an input strimgrejects and halts if the
bracketing or operator structurewfare illegal. This can be tested in logspacew I§ legal,
thenM continues by running the functiarder described by the following pseudo-code:
function order (tensorF) : (nat, nat);
var k, £, m, n: nat;
begin caseF in:
atomic: determine order af and store it in(k, £);
return (k, ¢);
(G + H): (k, £) := order(G); (m, n) := order(H);
if k £ m or £ # n then halt and rejecti;
return (k, £);
(G- H). (k,¢t):=order(G); (m,n) := order(H);
if £ # m then halt and rejecti;
return (k, n);
(G® H): (k, £) := order(G); (m, n) := order(H);
return (k€, mn);
esag
end.
Theorder function may be implemented av1, using a tape in a pushdown like fashion to
handle the recursive calls. Heng£ operates in polytime, sinc® performs a depth-first
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search of the formula, and since polynomial space is sufficient to keep track of the orders
in binary notation. The initial calbrder(F) thus returns the order af. [

Definition 5. For each semiring and eactk and¢ we define vé}* : Th' — M%", as
follows:

F if Fis atomic
y valy' (G) + valg‘ (H) if F=(G+ H)
valg (F) = 1 vats™ (G) - vat2 (o) if F = (G- H)andG e T&"

vald"*"(G) @ vale"(H) if F = (G® H)andH € T3".

That is, we associate with each tensor formtilaf orderk x £ its k x £ matrix “value” in
the natural way.

The partial trace evaluation problem is defined as follows:

Definition 6. LetS be a semiring. The partial trace evaluation problem means to determine
thekth partial trace of va}" (F - FT) for a given tensor formuld overS of ordern x 1
and a natural numbég which is a power of two and is written in binary.

5. From gate arrays to sum-free tensor formulas and back

In this section we show how to encode gate arrays into specific tensor formulas over
an appropriate semiring, and conversely, how to compute from a particular type of tensor
formula F a gate array which will later be used as a mean to solve a partial trace instance
built from F. In particular, we are interested in sum-free tensor formulas obeying some
further easy properties.

Definition 7. A tensor formulaF' is sum-fredf and only if none ofF and its sub-formulas
has the formG + H, for tensor formulags and H. A tensor formula isarray-like if and

only if all sub-formulas ofF' evaluate to square matrices or column vectors. Moreover, a
array-like tensor formuld is orthogonal array-likeif and only if all sub-formulas ofF
evaluate to orthogonal square matrices or column vectors wheserm equals 1.

We choose the term “orthogonal array-like” because as we will show, such a formula
can be reorganized as a product of an orthogonal matrix with a column vector, i.e., as the
specification of an orthogonal system of linear equations. Observe, that “sum-free array-
like” implies that each sub-formul& of a tensor formula fulfills the following properties:

If F = (G- H),thenG is a matrix and eitheH is a matrix or a column vector, and if
F = (G ® H), either bothG and H are matrices or both are column vectors.

In the forthcoming we use the terminology that a gate array is said tevagsibleif
and only if all gates in the gate array can be described by orthogonal matrices. Thus, both
guantum and probabilistic gate arrays are reversible gate arrays.
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5.1. From gate arrays to sum-free tensor formulas

The construction of a sum-free tensor formula from a given gate array is rather straight-
forward and is done as follows:

Lemma 8. Let C be a(reversiblg gate array operating on n wiresvhose gates can be
described by(orthogona) square matrices over a semiring. Then there is a polytime
computable functiorwhich given a suitable encoding of €omputes éorthogona) array-
like sum-free tensor formul&- of order2” x 2" such that for eachh = (x1,...,x,) €
{0, 1}, if gate array C maps$p) = |x1...x,) to |), then

W) = valz? (Fo) - o),

Ig’l(dj) for some polytime computable sum-free tensor formdula

and|p) = va
Proof. Let C be am-leveled gate array, wherg€; denotes theth level of C, with Cq is
the left-most and’,, the right-most level. Without loss of generality we assume that each
level contains only one gate and moreover each gate acts on neighboring wires. This can be
achieved by inserting extra swap gates. In the following we describe how to construct an
equivalent tensor formul&¢ from C.

If level C; contains &-bit gate H with 1<k <n acting on the wiregup toj + k — 1,
for j + k — 1<n, then

Fo,= (15t o He 1Y),

is the tensor formula of ordef*2< 2" which describes the system evolution in thetime
step. Recall, thatt®” is a shorthand notation for threfold iterationA A ® - - - @ A.
To complete the description of the sum-free tensor fornfiglaover semirings let

FC = FCm ...FCZ . FC]_’

since according to the usual convention, the input-to-output direction in a gate array is
left-to-right, while in its matrix representation, the array’s action on its input is given as a
product of matrices with a column vector, and is read right-to-left. It is readily verified that
for eachx; € {0, 1} with 1<i <n, if Cmaps|¢) = |x1...x,) to|y), then

) = vals ? (Fc) - o),

and|¢) = valg’l(d;r) for the sum-free tensor formula

— 2 2 2
dy = €x1+1 ® Cxp+1 Q- ® Cxpt1-

SinceF¢ andd, are polytime constructible from a suitable description of the gate &ray
and its input, the stated claim follows[]

Although Lemma8 only applies to input vectors of the forpa; . . . x;,), arbitrary input
vectors of the formg) = Zwe{o, 1 %w|w) are appropriately mapped to output vectors due
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to the linearity of gate array “semantics.” Observe, that it is not obvious that all possible
vectors|¢) obey sum-free tensor formula representations. Nevertheless, input vectors for
probabilistic and quantum computations do obey sum-free tensor formula representations,
since for a gate array anwires withm 1 input bits and #:, ancilla bits, i.ep = m1 + 2mo,

we find that for a particular input = (x1, ..., x,,) € {0, 1}"* the input vector can be
described by

mi m2 1
lp) = (® |xl~)) ® <® §(|OO) +01) + 10) + |11>)) ;

i=1 i=1

where(]00) + |01) + |10) + |11)) can be explicitly given without summation. Thus, in both
cases sum-free tensor formulas exist.

Moreover, the previous lemmai is not restricted to gate arrays operatmgioss carrying
(qu)bits only. In fact, one can easily generalize the result of the lemma such that it work
on gate arrays with multi-valued logic, in the sense that there is a mappindfrom, n}
to the natural numbers, defining the arity of the wires. This approach is even more general
than the multi-valued bit approach presented studied in the literg@dfewhere each wire
carries (qu)dits of same dimensionality. This more general model allows us to build gates
dealing with, e.g., (qu)bits and (qu)trits simultaneously in a single gate.

5.2. From sum-free tensor formulas to gate arrays

Inthe formula to gate array part, we must deal with the fact that a sum-free tensor formula
may contain matrices of various sizes and vectors at atypical locations. In principle, the latter
can be regarded as a non-standard manner of specifying the gate array’s input. The matrices
of various orders, however, cannot be readily interpreted in terms of gate array computations.
For instance, consider the sum-free tensor formula

(A® B)(B® A),

whereAis of order 2x 2 andB an order 3« 3 matrix. Both Kronecker products independently

considered may be realized on a two wire gate array, where the wires carry bits and trits,

but(A ® B)(B ® A) lacks a direct realization on gate arrays. This comes from the fact that
the wires of the independently constructed gate arrays do not fit together, i.e., a bit in the
first product must become a trit in the second one and vice versa. To overcome situations
like the above described one the following solutions may be considered:

(1) We stay with “bit-logic” and thus restrict tensor formulas to suit our needs, i.e., all
atomic sub-formulas are matrices whose order is a power of two or column vectors of
length # for somek > 0. This explicitly forbids tensor products as the above given ones
and thus is the simplest solution to our problem.

(2) Matrices of various orders are allowed, and therefore gate arrays as introduced must
be generalized to cope with this new situation. In this way we focus on a multi-valued
bit approacH27], where wires carry (qu)dits, i.e., staté, |1), ..., |d — 1), from
a d-dimensional space. In fact, this approach is even more general, since gates may
act on wires with various dimensionality. For instance one can design gates acting on
(qu)bits and (qu)trits simultaneously. Considering our small example, we find, that the
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Kronecker productB ® A) can be turned intoA ® B) by pre- and post-multiplying it

with appropriate stride permutation matrices, when working in a commutative semiring.
These stride permutations act on both wires—the (qu)bits and (qu)trits—simultaneously.
Hence, we can come up with a gate array realizing the behavidur €f B)(B ® A).
Nevertheless, for more complex examples like, €4® B® C)(D ® C), whereAand

B are as above ardis a 5x 5, and finallyD a 6 x 6 matrix, further problems face up,
since the order of the involved matrices in the Kronecker products may not be equal,
but their products are. Here the sub-formua® B ® C) can be implemented on a
gate array with three wires carrying (qu)bits, (qu)trits, and (qu)quints, while® C)
induces a two-wire gate array, where wires carry (qu)sets and (qu)quints. Again, further
restrictions have to be imposed in order to overcome these problems.

(3) Finally, gates may act on various (qu)dits as above, but instead of redefining the gate
array’s action, the action of the gate is embedded in a higher dimensional space of
suitable size, i.e., (qu)dits are embedded in dimensiondijtfo? suitablek >0. Tech-
nically, this means that we pad our matrices and vectors in order to turn their orders into
powers of two, and thus working on gate array wires carrying (qu)bits only. Observe,
that the underlying computational model is quite general, since it allows, e.qg., (qu)bits
and (qu)trits to be processed by a single gate. This is in fact the most general scenario
for the multi-valued bit approach, since the wires are “non-homogeneous” w.r.t. their
(qu)dits.

Although, we favour the third approach, since the problem solution is the most general one,

we first have to deal with the first approach, working with (qu)bits only.

5.2.1. Tensor formulas where all atomic sub-formulas are powers of two

Before we show how to transform a suitable tensor formula into a gate array acting on
(qu)bits, we show that the postulated requirements on a given tensor formula as specified
in the discussion above, can be verified in deterministic polytime. We omit the proof of
following lemma, because it is quite similar to the proof of Lemdna

Lemma 9. Testing whether a string encodes a valid tensor formula and (&t check
sum-freenesgb) orthogonality on sum-free formulag) the array-like propertyand (d)
whether all atomic sub-formula have ordexghich are powers of twocan be done in
deterministic polytime [

Now we are ready to prove the converse relation, i.e., transforming a array-like sum-free
tensor into an equivalent gate array, if the formula obeys some additional easily checkable
properties.

Theorem 10. Let F be a(orthogona) array-like sum-free tensor formula of ordgt x 1

over semiringS, where the orders of all atomic sub-formulas are powers of two. Then there
is a polytime computable functipmhich given the tensor formulg Eomputes éeversiblg

gate arrayCr overS operating on n wires and an inplip ) (with (¢g|er) = 1), such

that

W) = vals H(F),
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if gate array Cr maps|¢ ) to vector|y ), and |¢pg) = valg'l(d;) for some sum-free

tensor formuladr.

Proof. We prove the following more general statement, where we call a tensor foimula
closedif F has order 2 x 1, for somen >0, andopenif the order equals’2x 2", for
somen >1. Let F be a closed (open, respectively) array-like sum-free tensor foriula
over semiringS having only atomic sub-formulas whose orders are powers of two. Then
there is a polytime computable function, which given the tensor forfiu@mputes a gate
arrayCr overS operating om wires and an (arbitrary, respectively) ingyt;), such that
W) = vale '(F) (W) = valz ' (F) - o), respectively) if gate arragr maps|¢ ) to
vector|y ), and|pg) = valf;’l(d;) for some sum-free tensor formufa.

The statement is shown by induction on the (orthogonal) sum-free tensor fofintfla

F is an atomic sub-formula, then we distinguish the cases whétlieppen or closed:

(1) If F is closed, i.e., is of order2x 1, then it specifies the amplitudes for all pos-
sible combinations of values df input bits. Thus, the trivial gate arra§r only
consisting ofk wires with no gates at all and the sum-free tensor fornagla= F
satisfied

W) = vald L(p),

since Cr realizes the identity transformation ¢op) = valfgk’l(d;); this meangy/)
equals o).

(2) If F is a matrix of order & x 2%, i.e., formulaF is open, ther¥ is interpreted as the
specification of &-bit gateF . Thus, the gate arrayy consists of the single-bit gateF’
acting onk wires and the input to the gate is some vector as, e.g., the unit column vector
e%k of length Z. Trivially, the gate array and the input vector fulfill the requirements

above. Observe, thaf = (¢2)®*.
Now assume that the statement holds for sub-formGlaend H of the tensor formula
F. Thus, by induction hypothesis there are gate ar@ysandCy and inputs/¢;) and
|y ), that can be specified by sum-free tensor formdlaanddy, respectively. Then we
distinguish two cases:
(1) f F = (G- H), then we combine the sub-arragg; andC¢ in sequential manner,
whereCy is to the left ofC, and define the input to He ). Itis easy to see thais
and|¢ ) fulfill the required properties.

4 1f working on a fieldS instead of a semiring, one can show the following result:|l&#tbe a vector over the
field S of length & obeying(y|y) = 1. Then there is a matri over an extension field &, whose first column
equals|y), which can be decomposed into an orthogonal m&rand an upper diagonal matfkwhose upper
left element equals 1, and both matrices are &esatisfyingA = Q - R. The proof relies on a careful analysis
of the Gram-Schmitf17] algorithm, which inductively computes an orthogonal (orthonormal) basis from any set
of linearly independent vectors. Therefore, the orthogonal m&tnay be interpreted as the specification of a
k-bit gateQ. Thus, a gate array consisting of a sin@igate acting ok wires maps inpufe) = e%k = (e%)®k to
vector|y). Observe, that i§ is a (semi)ring, then a similar statement as that for fields is not true in general.
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(2) If F = (G ® H), then the sub-arrays are combined in parallel, wiigsds on top of
Cp. Thus, the inputequal®;) ® |@y), which can be described by the sum-free tensor
formuladg ® dy. Again, the induction assertion is fulfilled.

This proves the statement. Observe, that one can easily show, that whéheven
orthogonal array-like sum-free tensor formula, then all gates in the gate @gragn be
specified by orthogonal matrices, and moreover, the ifppi obeys(pr|or) = 1 and
has a sum-free tensor descriptiori.]

The proof above reveals a significant difference of probabilistic and quantum
computation—see the footnote again. In the former case, the ancilla bits must be given
well prepared to the gate array, since the gate array can only perform deterministic compu-
tations and thus, is not able to prepare them itself. In the latter case, this preparation is not
necessary, since the gate array itself is able to prepare them properly. This means, thatin the
guantum case one can set all ancilla bits to, &0y, without changing the computational
power of the underlying device.

5.2.2. Tensor formulas in general

Finally, let us consider arbitrary (orthogonal) array-like tensor formulas, not necessarily
obeying the property that all atomic sub-formulas are powers of two. The following lemma,
which is very technical and the main ingredient of the transformation to an equivalent gate
array, shows how to pad matrices and vectors in order to turn their orders into powers of
two.

Lemma 11. Let F be a(orthogona) array-like tensor formula F of ordern x 1 over
semiringS. Then there is a polytime computable functiamich given the tensor formula
F, computes dorthogona) array-like tensor formula G over the same semiring of order
m x 1 having only atomic sub-formulas whose orders are power ofswch thatval"s'l(F)

appears in the upper left corner oalg’l(G), ie.,

valil(F)
val1(G) = ( S > ,
s O
where(0); denotes the all zero row vector of length k. If F is sumsfteen so is tensor
formula G

Proof. We prove the more general statement, that any (orthogonal) array-like tensor formula
F of ordern x 1 (n x n, respectively) over semiring can be turned into a (orthogonal)
array-like tensor formula over the same semiring of ordex 1 (m x m, respectively)

having only atomic sub-formulas whose orders are power of two, such trfg’f(vé)l
(valg'”(F), respectively) appears in the upper left corner of the computed tensor formula
(and thus is a block diagonal matrix, respectively), when evaluated. In order to simplify
representation, we speak of the computed tensor formula as the padded verSianaf
denote it bye(F). Observe, since(F) has only atomic sub-formulas whose orders are
power of two, the order of(F) is a power of two, too.
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We proceed by induction af and distinguish three cases:

(1) If Fis anatomic formula, then consider two subcasesF(ik)a column vector of order
n x 1, then define(F) to be ther(n) x 1 column vector with entries fromi at the first
n positions, and zero otherwise. Heté:) denotes the smallest power of two greater
than or equal ton. (2) F is an ordem x n matrix, then set(F) to be thern(n) x n(n)
block-diagonal matrix consisting in a copy Bfat the upper left corner and the identity
matrix Ir,)—n atthe lower right. Obviously, in both cas€d") satisfies the above given
requirements. Moreover, formutéF’) is sum-free.

(2) If F = (G- H), thenwe argue as follows: Sinéeis array-like, tensor formul& does
not evaluate to a column vector. Hence, by induction we may assume(thais of
order Z x 2%, for somek. Then we consider two subcases: (1Hlfs a column vector,
then by induction hypothesigH) is of order 2 x 1, for somet, and we define the
sum-free tensor formula

(I27F @ &(G)) - e(H) if k < ¢,
e(F) = { ¢G)-e(H) if k=1¢, and
#6) - (PO @eH)) ifk > L.

(2) If H is a matrix, then the smaller matrix must undergo some padding as in the
previous case. Since the construction is very similar as above, the details are left to
the reader. Easy calculations show th@) is indeed a (orthogonal) array-like tensor
formula, having only atomic sub-formulas whose orders are power of two. As in the
previous case;(F) is sum-free, whenever is sum-free.

(3) If F = (G ® H), then we distinguish two cases and argue as follows:

(a) First, assume that and H are of ordenn x 1 andn x 1, respectively. Then by
induction hypothesis, assume thé®) (¢(H), respectively) is a array-like sum-free
tensor formula of order2x 1 (2 x 1, respectively) for somk (¢, respectively).

To improve readability of the proof, let = 2¢ andv = 2¢. Moreover, let

SG)=(81 .- &m Zmil .- &) .
e(H)=(h1 ... hy dps1 ... hy)T
and
o(G) @ e(H) = (g1h1 giha ... guhy)'.

In order to builde(G ® H) from &(G) ® ¢(H) we proceed in two steps: (i) First we
pre-multiplys(G) ® e(H) by the stride permutation matri®}", which results in

P" . (e(G) ®e(H)) = (g1h1 goh1 ... guh1 giha ... guhy)T,

and then (i) we pre-multiply with a block-diagonal matfi ,, ,, whose two blocks
are the stride permutatioﬁﬁ”’ (top left) and some permutation pfv — n) objects
(bottom right). ThusH, ,,, read as

P 0
Hﬂ,ﬂ,\’ = < 8 R> ’
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whereR is some permutation matrix of ordgtv — n) x u(v — n), which will be
specified later. Thus, we obtain

Hypv-(gihy gohn ... guh1 giho ... guhy)T
un
= Fi -(g1h1  goh1 guh1  gih2 guh)T
O R “ e :Ll’ DECEY lLt ‘
= (g1h1 gih2 ... guhn L

where the former part gin elements equal§ ® H and the remaining(v — n)
elements are some permutation of ghe;’s, for 1<i <p andn + 1< j <.
This completes our construction and defines

e(G®H) = (Hypyv- P") - (e(G) ® e(H)) .

(b) If G and H evaluate to square matrices of orderx m andn x n, respectively,
then it is easy to verify that pre-multiplyingG) ® e(H) by H, .., - Py reorders
the rows and that we can do the same job with the columns by post-multiplying
with (H,,,,” . P\,“")T, whereu andy are defined as in the previous case. Therefore,
¢(G ® H) is defined as
(G ® H) = (Hy v PI") - (6(G) @ e(H)) - (Hy v - PI™)" .

Observe, that the key to these definitions is that we have some freedom in defining
¢(G ® H), i.e., in fact, choosing it among many candidates, and that we will @l ,
as if it were the padded version of a smaller matrix. Before we concentratg, gn, we

prove that matrixP"” obeys a sum-free tensor formula description. By the stride permutation
identities

Prfﬂlm — Pnélmn . Pnlmn and Pnémn — (Pnen ® Im) . (]Z ® P,fm)»
which can be found ifi33], one immediately observes, that
P = (P4
and sinceu is a power of two, we find
/2
quv = (PéLu/ ®12) : (I,uv/4® P24) s

if uv>4. This yields a array-like sum-free tensor formula for the magix with atomic

sub-formulas/, and P24. Now we are ready to concentrate &), ,. We distinguish two

cases, depending @hand H:

(a) IfbothG andH are atomic formulas, then we work ad hoc setfing n(m), v = n(n),
and define

(7 ,0)
N ,V= ’
n,u 0 [u(v—n)

wheren(n) denotes the smallest power of two greater than or equal to
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(b) Otherwise, we use our freedom to choose the lower right blogk;ip , to write it as
thekth power of some padded matm'xPz’”') of orderuy x uv, i.e.,

n\\k
Hy v = (S(Pzﬂ )) )
sinceP}" = (P3")¥ by the stride permutation identities.
In the forthcoming, we use the following facts for defining padded matricésaifd

B are square matrices having the same size, then we cat4seB) = ¢(A) - &(B),
and ifBis its own padded version, i.8,= ¢(B),thenwe can se{A® B) = ¢(A)® B.

Next by the stride permutation identities again, and our freedom to choose the
padding, we write

e(PY") = e(P2' @ 12) - (I, ® Pj),

which simplifies to
I = (s(PZZ”) ® [ﬂ/2> (e(1) ® PY).
Fore(1,) the obvious choice is(1,,) = I,. Note, that/, = 153’5.

The sum-free tensor formula of order 2 2v for 8(P22”) is obtained as follows:
Observe, thah can be expressed in polytimeas= ny - n2 . ..ng, where each; is the
row or column dimension of some atomic sub-formulaofExpressibility ofn in this
way can be readily verified by induction on the tensor formilahus, we can write
n = s - t, wheret is a row or column dimension of a atomic sub-formula. Now by the
stride permutation identities we can set

(PP = e(PP @ 1) - eI, ® PP,

since the unpadded matrices involved in the multiplication must be of same size in order
to be compatible. Let = o7 with t = ¢(¢). Dealing with the above factors separately
yields

.
e(PF @ 1) = (Hyzo - P27) - ((PE) @ 1)) - (Hi 2. PP

by the general padding process; choositly) = I, which implies that;(PZZY) must
be of order 2 x 2g, results in a sum-free tensor formula for the first factor. Meanwhile,
the second factor reads as

2t 201 2t 201 T
6l ® PE) = (Hzro2c - PE) - (o1) @ 6(PE)) - (Haro2c - PET)

where we set(l;) = I, which implies that(Pzz’) is of order 2 x 2r.
This completes the description of the recursive construction#py, ,, which can be
done in polynomial time, and shows that the matrix under consideration has a sum-free
tensor formula implementation.
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Thus, we have shown the stated claim on the transformation of an arbitrary (orthogonal)
array-like formulaF to a (orthogonal) array-like formula having only atomic sub-formulas
whose orders are power of two such that the valug afppears in the upper left corner of
the constructed tensor formulald

As an immediate consequence of TheorEbnrand Lemma 11 we obtain the following
theorem, which is the main result of this subsection.

Theorem 12. Let F be a(orthogona) array-like sum-free tensor formula F of orderx 1
over semiringS. Then there is a polytime computable functiarhich given the tensor
formula F, computes Freversiblg gate array Cr over S operating on m wireswith
n<2",and an inputey) (with (pg|er) = 1), such that

B valjgl(F))
|lpF) o ((0)2’”—VIT ’

if gate array Cr maps|¢) to vector|y ), and|pp) = valém*l(d;) for some sum-free
tensor formulady.

6. Complexity results for sum-free tensor formulas

In this section we prove completeness results on variants of the partial trace problem for
orthogonal array-like sum-free tensor formulas. These variants are defined as follows:

Definition 13. LetS be a semiring.

(1) Theone partial trace problenover semiringsS is the set of all tensor formulag of
ordern x 1 together with a natural numblrwhich is a power of two, given in binary,
for which thekth partial trace of véll" (F - FT)equals 1.

(2) Thenon-zero partial trace problemver semiringS is the set of all tensor formulas
F of ordern x 1 together with a natural numblkywhich is a power of two, given in
binary, for which thekth partial trace of v%t”(F - FT)is non-zero.

In order to obtain our completeness results we have to deal with promise versions of the
above defined problems. Moreover, we also have to introduce promise complexity classes.

Observe, that PP is a “syntactic” class, since acceptance is defined by simply counting
the number of accepting paths, while BPP is a “semantic” class, i.e., for a non-deterministic
machine to define a language in BPP, it must have the property that for all inputs one
of the two outcomes has a clear majority. This property is not obvious how to check.
Thus, it is convenient to introduce the notion of promise problems and promise complexity
classe$12,31]. Apromise problenis a formulation of a partial decision problem and can be
specified inthe formR (x) given the promis@ (x)?,” whereQ andRare predicates. Thatis,
on inputx, an algorithm solving a promise problg@, R) has to correctly decide property
R(x), ifthe promiseQ (x) is met; otherwise, it can give an arbitrary answer. More formally, a
languagd. is said to be a solution t@, R), whenever € Q impliesthatc € R ifand only
if x € L. In particular, seR is the unique solution t¢2*, R). Thus, the promise problem
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(2*, R) is identified with the seR. Now we are ready to extend the class BPP as follows: a
promise probleniQ, R) belongs to pr-BPP if and only if there is a non-deterministic Turing
machine, such that if € Q, then either the number of accepting or rejecting paths has
clear majority, and fox € Q, the wordx is in Rif and only if the Turing machine accepts
with clear majority. Observe, that™, L) is in pr-BPP if and only ifL is in BPP. We can
similarly define the generalized class pr-BQP in terms of promise problems. Finally, our
reductions are polytime many-one reductions, and we say that a promise prableth

is uniformly many-one reducible in polytime to a promise problgnT), if there exists

a partial polytime computable functioh: {x € X* | Q(x)} — 2*, such that for every
solutionA of (S, T), the seB defined byB(x) = A(f(x)) is a solution of(Q, R).

The promise version of the one partial trace and non-zero partial trace problem restricted
to tensor formulas of order x 1 such that théth partial trace of the matrix \/§F(F FT
evaluates to either 0 or 1, will be called the Qprbmisein the forthcoming. Moreover, we
refer to the promise classes associated with P and EQP, respectively, as pr-P and pr-EQP,
respectively. Then the following first main theorem of this section reads as follows.

Theorem 14. (1) TheO—1promise version of the one partial trace problem over the positive
rationals Q@™ (rationals @, respectively, restricted to the domain of orthogonal array-like
sum-free tensor formulais complete fopr-P (pr-EQPrespectivelyunder polytime many-
one reductions

(2) The non-zero partial problem over the positive ration@ls (rationals Q, respec-
tively), restricted to the domain of orthogonal array-like sum-free tensor formigaom-
plete forNP (NQP respectivelyunder polytime many-one reductions

Proof. We only prove the first statement, since the second one can be shown by similar
arguments. The hardness of the 0—1-promise one partial trace problem on orthogonal array-
like sum-free tensor formulas is shown by a generic reduction from (pr-EQP, respectively).
Using Theoren®, we start with an-level reversible gate arrdy over the positive rationals
working onn wires number from 1 to, whose accepting subspace is defined by setting the
first bit to |1). Now using Lemma 8 we build fror@ an equivalent tensor formuléc in
polytime. Meanwhile we define for the gate array’s input bitsip tox, a tensor product

dy = Q!4 e%+xi of order 1x 2" of n unit row vectors:? each of order X 2. By Lemma

8 itis easy to see that the first 2 entries along the diagonal of
val ? (Fc -d]) - (Fc - d]))

add up to the value ofc (x), which is the probability that the gate array’s output is projected
onto the accepting subspace. The original gate array’s input is accepted if and only if this
partial trace is exactly one, by which acceptancé&hy defined. Scrutiny of the reduction
shows that the constraint ofe (x) is transported intact from the description@andx to
the paTrtiaI trace orthogonal array-like sum-free tensor formula problem@venstance
Fc-d].

In the other direction, we use Lemriid and Theorem 10 to translate an instaice2k)
of the partial trace problem variant under consideration into the description of a reversible
gate arrayCr overm bits, wherem <n, if the order of F equals 2 x 1, and of its input
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lp); the Zth partial trace of
vanZG,DJ;2 (F-FT

represents the probability that the output bits of the gate afsape projected onto the
direct sum of the dimension-1 subspaces generatg@)by |0...00), |[1) = |0...01),

|2) = |0...10), ..., and|2X — 1). The promise on the partial trace is transported unmodified
from the input tensor formula to the reversible gate array.

In the remainder of this section we define meaningful problems, which capture PP,
pr-BPP, and pr-BQP. Recall, that a tensor formalégs called orthogonal if and only if’
all sub-formulas ofF evaluate to orthogonal square matrices or vectors wigssrm
equals 1.

Definition 15. Let S be either the commutative semiring of positive ratiorafs or the
field of rationalsQ. The majority partial trace problenover semirings is the set of all
orthogonal tensor formulag of ordern x 1 together with a natural numb&rgiven in
binary, for which thekth partial trace of va}" (F - FT) is superior to%.

As already mentioned, the classes BPP and BQP are defiaedsemantic condition.
Thus, we need a promise version of the majority partial trace problem, which captures
the semantic condition in order to obtain completeness resultS et eitherQ™ or Q.
Restricting the majority partial trace problem to orthogonal tensor formulas of erdéer
such that the (partial) trace of \geﬂ(F FTy, belongs to the intervao, %] U [%, 1], is called
thestrict majority partial trace problemNow we are ready to prove the following theorem.

Theorem 16. (1) The majority partial trace problem over batthe positive rational€™
and rationalsl in general restricted to the domain of orthogonal array-like sum-free tensor
formulas is complete fd?Punder polytime many-one reductions

(2) The strict majority partial trace problem over the positive ration@ls (rationals@,
respectively, restricted to the domain of orthogonal array-like sum-free tensor formulas is
complete foipr-BPP (pr-BQPrespectivelyunder polytime many-one reductions

Proof. We only prove the second statement. For the first statement, observe, that PP equals
its quantum counterpart as discussed after The&emhe proof of the second assertion
parallels that of Theorem 14. Hardness follows from Theorem 2 and Lemma 8, while
containment is shown with Theorem 10, and the fact, that the promise on the partial trace
problem is transported unmodified from the input tensor formula to the reversible gate
array. O

We summarize our results on variants of the partial trace problem over the positive
rationals or rationals in general in Table 3. It is worth mentioning that both the one partial
trace and non-zero partial trace problems over the Boolean senfiringstricted to the
domain of orthogonal array-like sum-free tensor formulas, is complete for P under polytime
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Table 3

Completeness results for the sum-free case summarized

Semiring One PTP with 0-1-promise Non-zero PTP Majority PTP Strict maj. PTP
Partial trace problem(PTP) with appropriate restricted domain

B P P - -

Qt pr-P NP PP pr-BPP

Q pr-EQP NQP PP pr-BQP

many-one reductions. Observe, that the O—1-promise is ridiculous in the case of Booleans
B, since by definition the promise condition is met.

7. Complexity results for tensor formulas in general

We discuss the partial trace evaluation problem and its variants for tensor formulas in
general. In this way, we obtain completeness results for complexity classes likepR,g.,
NP, C_P, and US, in more detail—a formal definition of these classes is given below. The
material presented here is not essential for the further understanding of probabilistic and
guantum computation, and therefore may safely be skipped by those not interested in this
aspect. A direct application of Lemm& will be the construction of complete problems for
the above mentioned classes.

To understand the statement of Lemma 17 below, keep in mind a situation in which it is
required to determine the trace of sayp B ® C & D, whereA, B, C, andD areln x ¢n
matrices andp : Mg’k X Mgk — Mgk’z" is the direct sum of matrices and is defined as

A O
non=(4 )

for A,B € M’gk, which generalizes to an arbitrary number of matrices in the domain.
Lemmal7 describes a preliminary step which uses tensors to produce a large block matrix
havingn x n sub-matrices compatible #§ B, C, andD on its main diagonal, i.e., the new
matrix has exactly the same diagonal elements gsB & C & D, but in permuted order.

This particular application of Lemma 17 would require the parameter 4.

Lemma 17. Leta sequencA = (A;), with 1<i <m, of ¢n x £n matrices over a semiring
S be given. Consider thénn x ¢mn matrix A = 5" ; A;.Thenthere is a polytime Turing
machine which computes on inpAifa tensor formulaF,, o evaluating to th&mn x ¢mn
matrix B = @f’:”l B;, whereB = (B;) with 1<i <¢m, of n x n matrices satisfying

diag(B) = (P{™)~1 . diag(A) - P/™".
Here diag(A) denotes the matrjvhich consists of the diagonal entries of A and is zero

elsewhere. In other wordsnatrix B has the exactly the same diagonal elements as matrix
A, but in permuted order



230 M. Beaudry et al. / Theoretical Computer Science 345 (2005) 206—234

Proof. First, we show how the diagonal elements of an arbitrary square nmfatamd
P~1.A. P, for apermutation matriR such that the corresponding multiplication operation is
defined, are related to each other. Observe,fhdt= PT sinceP is a permutation matrix.
Assume tha(P‘l),»,j = (P);; = 1forsome Xi, j<n.Thenitis easily seen that

(P_l A P)ii - Xn: i (P_1>i i (A)je - (Phei = (A)j -
T j=lk=1 '

Thus,P~ 1. diag(A) - P = diag(P~1- A - P) follows.

Next considerd = @/’ ; A;. To simplify presentation, let us call a matrix of the above
given form am-uniform block diagonal matrix. Now consider the tensorforn{tﬂﬁ””)—l-
A - (Pf™), which results in a matrix

Bi1 ... By

Bea ... By

where theB; ;’s arem-uniform block diagonal matrices of ordem x mn. This is because
pre- and post-multiplying\ by (P/™")~* and P/™", respectively, rearranges the rows and
column in¢ stride fashion. Thus, from every sub-matrx exactlyn rows andn columns
are taken to form a single stride. Therefore #ig’s arem-uniform block diagonal matrices
of appropriate order.

Then

Bi1i1 ... Big

£
]
Fun=Y (Df@tm)-| 1 i |- (D ®du)

i=1 By1 ... Byy

equals thém-uniform block diagonal matri@f=1 B; ; of orderfmn x £mn, whereD!' is

the ordem x n “dot matrix” having one in positioit, i) and zero elsewhere. Moreover, by

our previous investigation on the effect of permutation matrices to the diagonal elements of
a matrix we immediately conclude that

diag(B) = (P{™)~1. diag(A) - P/

holds, whereB = vale"™ " (F a).

Finally, one observes, that the tensor form#jaa is polytime constructible from the
given input using the identities on stride permutations and observind,that I,, ® I,.
This proves this statement]

As an application we construct complete problems for the above mentioned complexity
classes, which are defined as follows: The corresponding counting version of NP is denoted
by #P and is the class of functioissuch that there is a machinewith the same resources
as the underlying base class, such that) equals the number of accepting computations of
M onx. The decision class NP is defined Booleancomputation models, in that they rely
on the mereexistenceof accepting computations. If existence is replaced by the predicate
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“there is anodd number ofaccepting computations,” we obtain the parity verdida]

@®P and the class MOPP, which is similarly defined with respect to counting modulo

q. More formally, ®P is the class of sets of tyder | f(x) # 0 (mod 2} for some

f € #P. Moreover, consider the complexity class [GApP = {f — g | f,g € #P}

as a natural generalization of #P. Additionally, we will make use of some further classes,
namely consider the chains

co-NPC USC C_P and UPC SPP= co-SPPC C_Pnco-C_P.

Here US is the class of sets of type | f(x) = 1} for somef € #P and is calledinique
polytime[8]. Moreover, UP denotes Valiant’s class [34], which is the set of all languages
whose characteristic function belongs to #P and SPP is a generalization of UP and is
defined to be the set of languages whose characteristic function beloBgpRy hence is
the difference of two #P functions [13,28]. Observe, that 8PROD,,-P, for anyg; thus,
in particular SPRE ®P. Recall that CP is the class of sets of type | f(x) = g(x) }, for
somef, g € #P. Finally, the promise counterparts of the classes UP and SPP, respectively,
are intuitively defined and denoted by pr-UP and pr-SPP, respectively.

Before we state the main theorem of this section, we need the following result, which
can be deduced from Damm et al. [9], and Beaudry and Holzer [6], respectively.

Theorem 18. The one problem on scalar tensor formulas over semifirig the set of all
tensor formulas of ordet x 1 for Whichvaliil(F) = 1. The one problem for scalar tensor
formulas is complete foNP, ®P, US,and C_P, respectivelywith respect to polytime
many-one reductions in case of Booledhghe fieldF,, the naturalsN, and the integers
Z, respectively

Now we are ready to state our first main theorem.

Theorem 19. (1) The one partial trace problem is complete fdP, dP, US, and CP,
respectivelywith respect to polytime many-one reductions in case of BoolBatie field
[F2, the naturalsN, and the integer&, respectively

(2) The non-zero partial trace problem is complete#?, &P, NP and the classo-C_P,
respectivelywith respect to polytime many-one reductions in case of BoolBatie field
[F», the naturalsN, and the integer#, respectively

Proof. We only prove the first statement, since the second one can be shown by similar
arguments. The containment of the one partial trace problem immediately follows from
Lemmal7 and the following reasoning. Létbe am x 1 order instance of the one partial
trace problem. Thew - FT is a tensor formula again, and can be reduced in sequence to a
diagonal tensor formul& whose matrix v@" (G) satisfies the condition that the diagonal

elements are exactly those of @étF . FT)—even in the same order. To this end, we
use Lemma 17 several times, together with appropriately constructed stride permutation
matrices in order to keep the sequence of the diagonal elements. Finally, we etuee
scalar tensor formula, i.e., a tensor formula of order 1, by pre- and post-multiplying
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by f;' and its transpose, respectively, giving

() G- ()"

as output, wherg;" denotes the row vector of lengthwhose firsk entries equals 1 and is
0 elsewhere. Since the vectdf may be of exponential length we use a similar technique
as in the construction of unit vectar$ presented by Damm et 8]. The main idea is that
ncan be expressed in polytimeas= m1 - mz .. .. m;, where eachn, is the row dimension
of some atomic sub-formula af. Expressibility ofn in this way is readily verified by
induction onG. But then, vectorf;' can be expressed as a finite sum in polytime. This
shows that the one partial trace problem polytime many-one reduces to a scalar tensor
formula. Thus, containment in NP, US, and CP, respectively, immediately follows
in case of Boolean®, the fieldF,, the naturalsN, and the integer, respectively, by
Theorem 18.

For the hardness part we argue as follows: Again by Theorem 18 the classe®NPS,
and C_P, respectively, reduce to a scalar tensor formula over the Booleahs field[F»,
the natural®N, and the integers.CP, respectively, such thatis in L if and only if the scalar
tensor formulaF’ evaluates to 1 (in each semiring under consideration). Deefmtode an
instance of the one partial trace problem together with the natural number 1 shows hardness
in all considered cases—in case of integers we additionally need the closuréafr@ler
union, which was shown by Gundermann et al. [20]. This completes this prddf.

The reader can verify that the above given proof can be rewritten in terms of the 0-1-
promise version. Meanwhile the complexity of the one partial trace and the non-zero partial
trace problem is obtained with a straightforward application of the above given argument.
Thus, we state the below given corollary without proof. Observe, that the 0—1-promise
is ridiculous in the case of Booleafisand the fieldF,, since by definition the promise
condition is met.

Corollary 20. TheO-1promise versions of the below mentioned problems are complete
w.r.t. polytime many-one reductions: Both the one partial trace problem and the non-zero
partial trace problem are complete fiNP, ®P, pr-UP andpr-SPP respectivelyin case of
BooleansB, the fieldF,, the naturalsN, and the integer#, respectively

We summarize our results on the computational complexity of the one partial trace and
non-zero trace problem and their promise versions in Téble

8. Conclusions

Through the study of gate arrays, we have developed a common algebraic description for
polytime complexity classes, where the choice of the semiring (plus a possible promise)
determines the complexity class. In this way, characterizatiogroP, NP,&P, pr-BPP
and their quantum counterparts pr-EQP, NQP, and pr-BQP are obtained. In particular, for
the inclusion BPRC BQP, the classical model of polytime probabilistic computation turns
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Table 4
Completeness results for the general case summarized
Semiring 0-—1-promise Unrestricted
one PTP non-zero PTP one PTP non-zero PTP
Partial trace problem(PTP)
B NP NP NP NP
Fo oP oP oP P
N pr-UpP pr-UpP us NP
VA pr-SPP pr-SPP £pP co-C-P = NQP

out to be a special case of polytime quantum computation where interference between
computations is ruled out.

The definitions of variants of the partial trace problems on (sum-free) tensor formulas al-
lowed us to obtain complete problems for the above mentioned polytime complexity classes
in a very natural way. Moreover, by giving up sum-freeness, classe®kkeNP, C_P, its
complement co-CP = NQP, the promise version of Valiant's class UP, its generaliza-
tion promise SPP, and unique polytime US, were captured. It would be interesting, to see
whether extending our work to other semirings would yield characterizations for further
complexity classes.
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