204 research outputs found

    Marriages of Mathematics and Physics: A Challenge for Biology

    Get PDF
    The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the mathematical practices and their foundations. Yet, the collapse of Euclidean certitudes, of over 2300 years, and the crisis in the mathematical analysis of the 19th century, led to the exclusion of “geometric judgments” from the foundations of Mathematics. After the success and the limits of the logico-formal analysis, it is necessary to broaden our foundational tools and re-examine the interactions with natural sciences. In particular, the way the geometric and algebraic approaches organize knowledge is analyzed as a cross-disciplinary and cross-cultural issue and will be examined in Mathematical Physics and Biology. We finally discuss how the current notions of mathematical (phase) “space” should be revisited for the purposes of life sciences

    The reasonable effectiveness of Mathematics and its Cognitive roots 1

    Get PDF
    “At the beginning, Nature set up matters its own way and, later, it constructed human intelligence in such a way that [this intelligence] could understand it” [Galileo Galilei, 1632 (Opere, p. 298)]. “The applicability of our science [mathematics] seems then as a symptom of its rooting, not as a measure of its value. Mathematics, as a tree which freely develops his top, draws its strength by the thousands roots in a ground of intuitions of real representations; it would be disastrous to cut them off, in view of a short-sided utilitarism, or to uproot them from the ground from which they rose ” [H. Weyl, 1910]. Summary. Mathematics stems out from our ways of making the world intelligible by its peculiar conceptual stability and unity; we invented it and used it to single out key regularities of space and language. This is exemplified and summarised below in references to the main foundational approaches to Mathematics, as proposed in the last 150 years. Its unity is also stressed: in this paper, Mathematics is viewed as a "three dimensiona

    Acta Scientiarum Mathematicarum : Tomus XIII. Fasc. 2.

    Get PDF

    Role of Riemann's and Goldbach's hypotheses in the behaviour of complex systems: Introduction to the concept of "sciances"

    Get PDF
    The authors have already established a bi univocal correspondence between Riemann zeta functions and dynamic processes under the control of integro-differential operator of non-integer complex order. We recall that the Riemann zeta function can then be related to hyperbolic geodesics whose angles at the boundary are determined by the real part of the power laws that define the Riemann series. It is suggested that Riemann's conjecture can be reduced to a geometrical phase transition with a reduction of the parameter of order resulting from the combination of a pair symmetries associated with a quasi-self similarity of geodetics. The well-known relationship with the set of prime numbers must be considered as the result of the local existence of stationary 'state' in the dynamics. The work is focused on the 'non stationary' behaviour of Riemann zeta function. It is shown that the main characteristic of the dynamics of complex systems may be associated to a hybridizing between a pair of states and/or processes able to give a geometrical status to the concept of the time and equally to the concept of energy. It is based on the mirror properties of complementary zeta function. It is shown also that the set of prime numbers, which controls the transitions between 'states', is the simplest form of the complexity. This analysis suggests the existence of a mathematical relationship between Riemann's and Goldbach's hypothesis. Such relationship would be the base of an extension of the principles of the science for the analysis of the complexity. According to previous proposal we name this extension that enlarges the principles of the science : sciance with 'a'
    • …
    corecore