1,895,879 research outputs found

    Method for classification of the computational problems on the basis of the multifractal division of the complexity classes

    Get PDF
    This paper proposes the method of the multifractal division of the computational complexity classes, which is formalized by introducing the special equivalence relations on these classes. Exposing the self-similarity properties of the complexity classes structure, this method allows performing the accurate classification of the problems and demonstrates the capability of adaptation to the new advances in the computational complexity theory

    The Complexity of Rooted Phylogeny Problems

    Full text link
    Several computational problems in phylogenetic reconstruction can be formulated as restrictions of the following general problem: given a formula in conjunctive normal form where the literals are rooted triples, is there a rooted binary tree that satisfies the formula? If the formulas do not contain disjunctions, the problem becomes the famous rooted triple consistency problem, which can be solved in polynomial time by an algorithm of Aho, Sagiv, Szymanski, and Ullman. If the clauses in the formulas are restricted to disjunctions of negated triples, Ng, Steel, and Wormald showed that the problem remains NP-complete. We systematically study the computational complexity of the problem for all such restrictions of the clauses in the input formula. For certain restricted disjunctions of triples we present an algorithm that has sub-quadratic running time and is asymptotically as fast as the fastest known algorithm for the rooted triple consistency problem. We also show that any restriction of the general rooted phylogeny problem that does not fall into our tractable class is NP-complete, using known results about the complexity of Boolean constraint satisfaction problems. Finally, we present a pebble game argument that shows that the rooted triple consistency problem (and also all generalizations studied in this paper) cannot be solved by Datalog

    On the Complexity of Polytope Isomorphism Problems

    Full text link
    We show that the problem to decide whether two (convex) polytopes, given by their vertex-facet incidences, are combinatorially isomorphic is graph isomorphism complete, even for simple or simplicial polytopes. On the other hand, we give a polynomial time algorithm for the combinatorial polytope isomorphism problem in bounded dimensions. Furthermore, we derive that the problems to decide whether two polytopes, given either by vertex or by facet descriptions, are projectively or affinely isomorphic are graph isomorphism hard. The original version of the paper (June 2001, 11 pages) had the title ``On the Complexity of Isomorphism Problems Related to Polytopes''. The main difference between the current and the former version is a new polynomial time algorithm for polytope isomorphism in bounded dimension that does not rely on Luks polynomial time algorithm for checking two graphs of bounded valence for isomorphism. Furthermore, the treatment of geometric isomorphism problems was extended.Comment: 16 pages; to appear in: Graphs and Comb.; replaces our paper ``On the Complexity of Isomorphism Problems Related to Polytopes'' (June 2001

    On the Complexity of Distributed Splitting Problems

    Full text link
    One of the fundamental open problems in the area of distributed graph algorithms is the question of whether randomization is needed for efficient symmetry breaking. While there are fast, polylogn\text{poly}\log n-time randomized distributed algorithms for all of the classic symmetry breaking problems, for many of them, the best deterministic algorithms are almost exponentially slower. The following basic local splitting problem, which is known as the \emph{weak splitting} problem takes a central role in this context: Each node of a graph G=(V,E)G=(V,E) has to be colored red or blue such that each node of sufficiently large degree has at least one node of each color among its neighbors. Ghaffari, Kuhn, and Maus [STOC '17] showed that this seemingly simple problem is complete w.r.t. the above fundamental open question in the following sense: If there is an efficient polylogn\text{poly}\log n-time determinstic distributed algorithm for weak splitting, then there is such an algorithm for all locally checkable graph problems for which an efficient randomized algorithm exists. In this paper, we investigate the distributed complexity of weak splitting and some closely related problems. E.g., we obtain efficient algorithms for special cases of weak splitting, where the graph is nearly regular. In particular, we show that if δ\delta and Δ\Delta are the minimum and maximum degrees of GG and if δ=Ω(logn)\delta=\Omega(\log n), weak splitting can be solved deterministically in time O(Δδpoly(logn))O\big(\frac{\Delta}{\delta}\cdot\text{poly}(\log n)\big). Further, if δ=Ω(loglogn)\delta = \Omega(\log\log n) and Δ2εδ\Delta\leq 2^{\varepsilon\delta}, there is a randomized algorithm with time complexity O(Δδpoly(loglogn))O\big(\frac{\Delta}{\delta}\cdot\text{poly}(\log\log n)\big)

    The complexity of two graph orientation problems

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 ElsevierWe consider two orientation problems in a graph, namely the minimization of the sum of all the shortest path lengths and the minimization of the diameter. Our main result is that for each positive integer k, there is a linear-time algorithm that decides for a planar graph Gwhether there is an orientation for which the diameter is at most k. We also extend this result from planar graphs to any minor-closed family F not containing all apex graphs. In contrast, it is known to be NP-complete to decide whether a graph has an orientation such that the sum of all the shortest path lengths is at most an integer specified in the input. We give a simpler proof of this result.This work is partially supported by EC Marie Curie programme NET-ACE (MEST-CT-2004-6724), and Heilbronn Institute for Mathematical Research, Bristol
    corecore