1,662 research outputs found

    A non-partitionable Cohen-Macaulay simplicial complex

    Get PDF
    A long-standing conjecture of Stanley states that every Cohen-Macaulay simplicial complex is partitionable. We disprove the conjecture by constructing an explicit counterexample. Due to a result of Herzog, Jahan and Yassemi, our construction also disproves the conjecture that the Stanley depth of a monomial ideal is always at least its depth.Comment: Final version. 13 pages, 2 figure

    The space of arcs of an algebraic variety

    Full text link
    The paper surveys several results on the topology of the space of arcs of an algebraic variety and the Nash problem on the arc structure of singularities.Comment: 29 pages; v3 corrects some typos. To appear in the Proceedings of the 2015 Summer Institute on Algebraic Geometr

    Polynomial Invariants for Affine Programs

    Get PDF
    We exhibit an algorithm to compute the strongest polynomial (or algebraic) invariants that hold at each location of a given affine program (i.e., a program having only non-deterministic (as opposed to conditional) branching and all of whose assignments are given by affine expressions). Our main tool is an algebraic result of independent interest: given a finite set of rational square matrices of the same dimension, we show how to compute the Zariski closure of the semigroup that they generate

    Discrete Morse theory for computing cellular sheaf cohomology

    Full text link
    Sheaves and sheaf cohomology are powerful tools in computational topology, greatly generalizing persistent homology. We develop an algorithm for simplifying the computation of cellular sheaf cohomology via (discrete) Morse-theoretic techniques. As a consequence, we derive efficient techniques for distributed computation of (ordinary) cohomology of a cell complex.Comment: 19 pages, 1 Figure. Added Section 5.

    On the Pierce-Birkhoff Conjecture

    Full text link
    This paper represents a step in our program towards the proof of the Pierce--Birkhoff conjecture. In the nineteen eighties J. Madden proved that the Pierce-Birkhoff conjecture for a ring Aisequivalenttoastatementaboutanarbitrarypairofpointsis equivalent to a statement about an arbitrary pair of points \alpha,\beta\in\sper\ Aandtheirseparatingideal and their separating ideal ;werefertothisstatementastheLocalPierce−Birkhoffconjectureat; we refer to this statement as the Local Pierce-Birkhoff conjecture at \alpha,\beta.Inthispaper,foreachpair. In this paper, for each pair (\alpha,\beta)with with ht()=\dim A,wedefineanaturalnumber,calledcomplexityof, we define a natural number, called complexity of (\alpha,\beta).Complexity0correspondstothecasewhenoneofthepoints. Complexity 0 corresponds to the case when one of the points \alpha,\betaismonomial;thiscasewasalreadysettledinalldimensionsinaprecedingpaper.Hereweintroduceanewconjecture,calledtheStrongConnectednessconjecture,andprovethatthestrongconnectednessconjectureindimensionn−1impliestheconnectednessconjectureindimensionninthecasewhen is monomial; this case was already settled in all dimensions in a preceding paper. Here we introduce a new conjecture, called the Strong Connectedness conjecture, and prove that the strong connectedness conjecture in dimension n-1 implies the connectedness conjecture in dimension n in the case when ht()islessthann−1.WeprovetheStrongConnectednessconjectureindimension2,whichgivestheConnectednessandthePierce−−Birkhoffconjecturesinanydimensioninthecasewhen is less than n-1. We prove the Strong Connectedness conjecture in dimension 2, which gives the Connectedness and the Pierce--Birkhoff conjectures in any dimension in the case when ht()lessthan2.Finally,weprovetheConnectedness(andhencealsothePierce−−Birkhoff)conjectureinthecasewhendimensionofAisequalto less than 2. Finally, we prove the Connectedness (and hence also the Pierce--Birkhoff) conjecture in the case when dimension of A is equal to ht()=3,thepair, the pair (\alpha,\beta)isofcomplexity1and is of complexity 1 and A$ is excellent with residue field the field of real numbers
    • …
    corecore