41,251 research outputs found

    A probabilistic algorithm to test local algebraic observability in polynomial time

    Get PDF
    The following questions are often encountered in system and control theory. Given an algebraic model of a physical process, which variables can be, in theory, deduced from the input-output behavior of an experiment? How many of the remaining variables should we assume to be known in order to determine all the others? These questions are parts of the \emph{local algebraic observability} problem which is concerned with the existence of a non trivial Lie subalgebra of the symmetries of the model letting the inputs and the outputs invariant. We present a \emph{probabilistic seminumerical} algorithm that proposes a solution to this problem in \emph{polynomial time}. A bound for the necessary number of arithmetic operations on the rational field is presented. This bound is polynomial in the \emph{complexity of evaluation} of the model and in the number of variables. Furthermore, we show that the \emph{size} of the integers involved in the computations is polynomial in the number of variables and in the degree of the differential system. Last, we estimate the probability of success of our algorithm and we present some benchmarks from our Maple implementation.Comment: 26 pages. A Maple implementation is availabl

    Polynomial Time Nondimensionalisation of Ordinary Differential Equations via their Lie Point Symmetries

    Get PDF
    Lie group theory states that knowledge of a mm-parameters solvable group of symmetries of a system of ordinary differential equations allows to reduce by mm the number of equation. We apply this principle by finding dilatations and translations that are Lie point symmetries of considered ordinary differential system. By rewriting original problem in an invariant coordinates set for these symmetries, one can reduce the involved number of parameters. This process is classically call nondimensionalisation in dimensional analysis. We present an algorithm based on this standpoint and show that its arithmetic complexity is polynomial in input's size

    Complexity Theory and the Operational Structure of Algebraic Programming Systems

    Get PDF
    An algebraic programming system is a language built from a fixed algebraic data abstraction and a selection of deterministic, and non-deterministic, assignment and control constructs. First, we give a detailed analysis of the operational structure of an algebraic data type, one which is designed to classify programming systems in terms of the complexity of their implementations. Secondly, we test our operational description by comparing the computations in deterministic and non-deterministic programming systems under certain space and time restrictions

    A kilobit hidden SNFS discrete logarithm computation

    Get PDF
    We perform a special number field sieve discrete logarithm computation in a 1024-bit prime field. To our knowledge, this is the first kilobit-sized discrete logarithm computation ever reported for prime fields. This computation took a little over two months of calendar time on an academic cluster using the open-source CADO-NFS software. Our chosen prime pp looks random, and p−−1p--1 has a 160-bit prime factor, in line with recommended parameters for the Digital Signature Algorithm. However, our p has been trapdoored in such a way that the special number field sieve can be used to compute discrete logarithms in F_p∗\mathbb{F}\_p^* , yet detecting that p has this trapdoor seems out of reach. Twenty-five years ago, there was considerable controversy around the possibility of back-doored parameters for DSA. Our computations show that trapdoored primes are entirely feasible with current computing technology. We also describe special number field sieve discrete log computations carried out for multiple weak primes found in use in the wild. As can be expected from a trapdoor mechanism which we say is hard to detect, our research did not reveal any trapdoored prime in wide use. The only way for a user to defend against a hypothetical trapdoor of this kind is to require verifiably random primes
    • …
    corecore