4,520 research outputs found

    Positional Games

    Full text link
    Positional games are a branch of combinatorics, researching a variety of two-player games, ranging from popular recreational games such as Tic-Tac-Toe and Hex, to purely abstract games played on graphs and hypergraphs. It is closely connected to many other combinatorial disciplines such as Ramsey theory, extremal graph and set theory, probabilistic combinatorics, and to computer science. We survey the basic notions of the field, its approaches and tools, as well as numerous recent advances, standing open problems and promising research directions.Comment: Submitted to Proceedings of the ICM 201

    Designing Networks with Good Equilibria under Uncertainty

    Get PDF
    We consider the problem of designing network cost-sharing protocols with good equilibria under uncertainty. The underlying game is a multicast game in a rooted undirected graph with nonnegative edge costs. A set of k terminal vertices or players need to establish connectivity with the root. The social optimum is the Minimum Steiner Tree. We are interested in situations where the designer has incomplete information about the input. We propose two different models, the adversarial and the stochastic. In both models, the designer has prior knowledge of the underlying metric but the requested subset of the players is not known and is activated either in an adversarial manner (adversarial model) or is drawn from a known probability distribution (stochastic model). In the adversarial model, the designer's goal is to choose a single, universal protocol that has low Price of Anarchy (PoA) for all possible requested subsets of players. The main question we address is: to what extent can prior knowledge of the underlying metric help in the design? We first demonstrate that there exist graphs (outerplanar) where knowledge of the underlying metric can dramatically improve the performance of good network design. Then, in our main technical result, we show that there exist graph metrics, for which knowing the underlying metric does not help and any universal protocol has PoA of Ω(logk)\Omega(\log k), which is tight. We attack this problem by developing new techniques that employ powerful tools from extremal combinatorics, and more specifically Ramsey Theory in high dimensional hypercubes. Then we switch to the stochastic model, where each player is independently activated. We show that there exists a randomized ordered protocol that achieves constant PoA. By using standard derandomization techniques, we produce a deterministic ordered protocol with constant PoA.Comment: This version has additional results about stochastic inpu

    Spectra of Monadic Second-Order Formulas with One Unary Function

    Full text link
    We establish the eventual periodicity of the spectrum of any monadic second-order formula where: (i) all relation symbols, except equality, are unary, and (ii) there is only one function symbol and that symbol is unary

    State of B\"uchi Complementation

    Full text link
    Complementation of B\"uchi automata has been studied for over five decades since the formalism was introduced in 1960. Known complementation constructions can be classified into Ramsey-based, determinization-based, rank-based, and slice-based approaches. Regarding the performance of these approaches, there have been several complexity analyses but very few experimental results. What especially lacks is a comparative experiment on all of the four approaches to see how they perform in practice. In this paper, we review the four approaches, propose several optimization heuristics, and perform comparative experimentation on four representative constructions that are considered the most efficient in each approach. The experimental results show that (1) the determinization-based Safra-Piterman construction outperforms the other three in producing smaller complements and finishing more tasks in the allocated time and (2) the proposed heuristics substantially improve the Safra-Piterman and the slice-based constructions.Comment: 28 pages, 4 figures, a preliminary version of this paper appeared in the Proceedings of the 15th International Conference on Implementation and Application of Automata (CIAA

    Buffered Simulation Games for B\"uchi Automata

    Full text link
    Simulation relations are an important tool in automata theory because they provide efficiently computable approximations to language inclusion. In recent years, extensions of ordinary simulations have been studied, for instance multi-pebble and multi-letter simulations which yield better approximations and are still polynomial-time computable. In this paper we study the limitations of approximating language inclusion in this way: we introduce a natural extension of multi-letter simulations called buffered simulations. They are based on a simulation game in which the two players share a FIFO buffer of unbounded size. We consider two variants of these buffered games called continuous and look-ahead simulation which differ in how elements can be removed from the FIFO buffer. We show that look-ahead simulation, the simpler one, is already PSPACE-hard, i.e. computationally as hard as language inclusion itself. Continuous simulation is even EXPTIME-hard. We also provide matching upper bounds for solving these games with infinite state spaces.Comment: In Proceedings AFL 2014, arXiv:1405.527
    corecore