84,799 research outputs found

    Lower Bounds for Linear Locally Decodable Codes and Private Information Retrieval

    Get PDF
    We prove that if a linear error-correcting code C: {0, 1}^n → {0, 1}^m is such that a bit of the message can be probabilistically reconstructed by looking at two entries of a corrupted codeword, then m = 2^(Ω(n)). We also present several extensions of this result. We show a reduction from the complexity, of one-round, information-theoretic private information retrieval systems (with two servers) to locally decodable codes, and conclude that if all the servers' answers are linear combinations of the database content, then t = Ω(n/2^a), where t is the length of the user's query and a is the length of the servers' answers. Actually, 2^a can be replaced by O(a^k), where k is the number of bit locations in the answer that are actually inspected in the reconstruction

    Improved Lower Bounds for Locally Decodable Codes and Private Information Retrieval

    Full text link
    We prove new lower bounds for locally decodable codes and private information retrieval. We show that a 2-query LDC encoding n-bit strings over an l-bit alphabet, where the decoder only uses b bits of each queried position of the codeword, needs code length m = exp(Omega(n/(2^b Sum_{i=0}^b {l choose i}))) Similarly, a 2-server PIR scheme with an n-bit database and t-bit queries, where the user only needs b bits from each of the two l-bit answers, unknown to the servers, satisfies t = Omega(n/(2^b Sum_{i=0}^b {l choose i})). This implies that several known PIR schemes are close to optimal. Our results generalize those of Goldreich et al. who proved roughly the same bounds for linear LDCs and PIRs. Like earlier work by Kerenidis and de Wolf, our classical lower bounds are proved using quantum computational techniques. In particular, we give a tight analysis of how well a 2-input function can be computed from a quantum superposition of both inputs.Comment: 12 pages LaTeX, To appear in ICALP '0
    • …
    corecore