Lower Bounds for Linear Locally Decodable Codes and Private Information Retrieval

Abstract

We prove that if a linear error-correcting code C: {0, 1}^n → {0, 1}^m is such that a bit of the message can be probabilistically reconstructed by looking at two entries of a corrupted codeword, then m = 2^(Ω(n)). We also present several extensions of this result. We show a reduction from the complexity, of one-round, information-theoretic private information retrieval systems (with two servers) to locally decodable codes, and conclude that if all the servers' answers are linear combinations of the database content, then t = Ω(n/2^a), where t is the length of the user's query and a is the length of the servers' answers. Actually, 2^a can be replaced by O(a^k), where k is the number of bit locations in the answer that are actually inspected in the reconstruction

    Similar works