3 research outputs found

    On the geometrical properties of the coherent matching distance in 2D persistent homology

    Get PDF
    In this paper we study a new metric for comparing Betti numbers functions in bidimensional persistent homology, based on coherent matchings, i.e. families of matchings that vary in a continuous way. We prove some new results about this metric, including its stability. In particular, we show that the computation of this distance is strongly related to suitable filtering functions associated with lines of slope 1, so underlining the key role of these lines in the study of bidimensional persistence. In order to prove these results, we introduce and study the concepts of extended Pareto grid for a normal filtering function as well as of transport of a matching. As a by-product, we obtain a theoretical framework for managing the phenomenon of monodromy in 2D persistent homology.Comment: 39 pages, 15 figures. Corrected the definition of multiplicity of points in the extended Pareto grid and the definition of normal function. Removed Rem. 3.3. Added Ex. 3.9, Fig. 11, Fig. 12, Rem. 5.3 and Fig. 15. Changed Rem. 4.9 into regular text. Reformulated statements of Theorems 5.1, 5.2, 5.4. Some changes in their proofs. Added references. Some small changes in the text and in the figure

    Modelling topological features of swarm behaviour in space and time with persistence landscapes

    Get PDF
    This paper presents a model of swarm behaviour that encodes the spatial-temporal characteristics of topological features such as holes and connected components. Specifically, the persistence of topological features with respect to time are computed using zig-zag persistent homology. This information is in turn modelled as a persistence landscape which forms a normed vector space and facilitates the application of statistical and data mining techniques. Validation of the proposed model is performed using a real data set corresponding to a swarm of fish. It is demonstrated that the proposed model may be used to perform retrieval and clustering of swarm behaviour in terms of topological features. In fact, it is discovered that clustering returns clusters corresponding to the swarm behaviours of flock, torus and disordered. These are the most frequently occurring types of behaviour exhibited by swarms in general

    On the geometrical properties of the coherent matching distance in 2D persistent homology

    No full text
    In this paper we study a new metric for comparing Betti numbers functions in bidimensional persistent homology, based on coherent matchings, i.e. families of matchings that vary in a continuous way. We prove some new results about this metric, including its stability. In particular, we show that the computation of this distance is strongly related to suitable filtering functions associated with lines of slope 1, so underlining the key role of these lines in the study of bidimensional persistence. In order to prove these results, we introduce and study the concepts of extended Pareto grid for a normal filtering function as well as of transport of a matching. As a by-product, we obtain a theoretical framework for managing the phenomenon of monodromy in 2D persistent homology
    corecore