19,320 research outputs found

    PowerAqua: fishing the semantic web

    Get PDF
    The Semantic Web (SW) offers an opportunity to develop novel, sophisticated forms of question answering (QA). Specifically, the availability of distributed semantic markup on a large scale opens the way to QA systems which can make use of such semantic information to provide precise, formally derived answers to questions. At the same time the distributed, heterogeneous, large-scale nature of the semantic information introduces significant challenges. In this paper we describe the design of a QA system, PowerAqua, designed to exploit semantic markup on the web to provide answers to questions posed in natural language. PowerAqua does not assume that the user has any prior information about the semantic resources. The system takes as input a natural language query, translates it into a set of logical queries, which are then answered by consulting and aggregating information derived from multiple heterogeneous semantic sources

    A study into annotation ranking metrics in geo-tagged image corpora

    Get PDF
    Community contributed datasets are becoming increasingly common in automated image annotation systems. One important issue with community image data is that there is no guarantee that the associated metadata is relevant. A method is required that can accurately rank the semantic relevance of community annotations. This should enable the extracting of relevant subsets from potentially noisy collections of these annotations. Having relevant, non heterogeneous tags assigned to images should improve community image retrieval systems, such as Flickr, which are based on text retrieval methods. In the literature, the current state of the art approach to ranking the semantic relevance of Flickr tags is based on the widely used tf-idf metric. In the case of datasets containing landmark images, however, this metric is inefficient due to the high frequency of common landmark tags within the data set and can be improved upon. In this paper, we present a landmark recognition framework, that provides end-to-end automated recognition and annotation. In our study into automated annotation, we evaluate 5 alternate approaches to tf-idf to rank tag relevance in community contributed landmark image corpora. We carry out a thorough evaluation of each of these ranking metrics and results of this evaluation demonstrate that four of these proposed techniques outperform the current commonly-used tf-idf approach for this task

    Context-Aware Information Retrieval for Enhanced Situation Awareness

    No full text
    In the coalition forces, users are increasingly challenged with the issues of information overload and correlation of information from heterogeneous sources. Users might need different pieces of information, ranging from information about a single building, to the resolution strategy of a global conflict. Sometimes, the time, location and past history of information access can also shape the information needs of users. Information systems need to help users pull together data from disparate sources according to their expressed needs (as represented by system queries), as well as less specific criteria. Information consumers have varying roles, tasks/missions, goals and agendas, knowledge and background, and personal preferences. These factors can be used to shape both the execution of user queries and the form in which retrieved information is packaged. However, full automation of this daunting information aggregation and customization task is not possible with existing approaches. In this paper we present an infrastructure for context-aware information retrieval to enhance situation awareness. The infrastructure provides each user with a customized, mission-oriented system that gives access to the right information from heterogeneous sources in the context of a particular task, plan and/or mission. The approach lays on five intertwined fundamental concepts, namely Workflow, Context, Ontology, Profile and Information Aggregation. The exploitation of this knowledge, using appropriate domain ontologies, will make it feasible to provide contextual assistance in various ways to the work performed according to a user’s taskrelevant information requirements. This paper formalizes these concepts and their interrelationships

    Detecting semantic groups in MIP models

    Get PDF

    Joint & Progressive Learning from High-Dimensional Data for Multi-Label Classification

    Get PDF
    Despite the fact that nonlinear subspace learning techniques (e.g. manifold learning) have successfully applied to data representation, there is still room for improvement in explainability (explicit mapping), generalization (out-of-samples), and cost-effectiveness (linearization). To this end, a novel linearized subspace learning technique is developed in a joint and progressive way, called \textbf{j}oint and \textbf{p}rogressive \textbf{l}earning str\textbf{a}teg\textbf{y} (J-Play), with its application to multi-label classification. The J-Play learns high-level and semantically meaningful feature representation from high-dimensional data by 1) jointly performing multiple subspace learning and classification to find a latent subspace where samples are expected to be better classified; 2) progressively learning multi-coupled projections to linearly approach the optimal mapping bridging the original space with the most discriminative subspace; 3) locally embedding manifold structure in each learnable latent subspace. Extensive experiments are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods.Comment: accepted in ECCV 201
    corecore