6,758 research outputs found

    Computer Tomograph Measurements in Shear and Gravity Particle Flows

    Get PDF
    The paper reports the recent results obtained on the applicability of cross-sectional digital imaging method to study particle flow characteristics in 3D particle beds forced to move by gravity or shear. X-ray CT imaging technique is widely used in medical diagnostics and, during the last decades, its spatial and temporal resolution has been improved significantly. In this study, an attempt was made to use this technique for engineering purposes. Two experimental set-ups with different types of particle flows were investigated using Siemens Somatom Plus type CT equipment. A series of trials were carried out in a small model hopper with flat bottom and almost cylindrical side wall slightly deviating from verticality. Non steady-state flow was studied during the outflow of particulate material from this vessel, through a central hole at the bottom. Further investigation was fulfilled in a modified Cuette-type shearing device to study steady-state shear flow. This equipment consisted of an almost cylindrical vessel identical to that used for gravity flow measurements, and a smaller inner cylinder rotating within this vessel concentrically, around its vertical axis. The surface of the inner cylinder was notched vertically, i.e. perpendicularly to the direction of rotation to increase wall friction between the particles and the cylinder. Almost spherical sucrose granules, also used for gravity flow measurements, were filled into the gap between the rotating cylinder and the outer wall of the equipment. Movement of particles took place due to shear, generated within the particle bed. By using X-ray CT technique, cross-sectional digital images were obtained in every two seconds for both types of particle flows. For this, the cross-sectional variation of the local Hounsfield density values were measured in a matrix of 0.1x0.1x2.0 mm space elements. It was proved that the applied non-invasive crosssectional imaging technique was suitable to distinguish the stationary and moving particle regions, and by this, to estimate the location of the boundary zone between them

    Comparison of fibre optical measurements and discrete element simulations for the study of granulation in a spout fluidized bed

    Get PDF
    Spout fluidized beds are frequently used for the production of granules or particles through granulation. The products find application in a large variety of applications, for example detergents, fertilizers, pharmaceuticals and food. Spout fluidized beds have a number of advantageous properties, such as a high mobility of the particles, which prevents undesired agglomeration and yields excellent heat transfer properties. The particle growth mechanism in a spout fluidized bed as function of particle-droplet interaction has a profound influence on the particle morphology and thus on the product quality. Nevertheless, little is known about the details of the granulation process. This is mainly due to the fact that the granulation process is not visually accessible. In this work we use fundamental, deterministic models to enable the detailed investigation of granulation behaviour in a spout fluidized bed. A discrete element model is used describing the dynamics of the continuous gas-phase and the discrete droplets and particles. For each element momentum balances are solved. The momentum transfer among each of the three phases is described in detail at the level of individual elements. The results from the discrete element model simulations are compared with local measurements of particle volume fractions as well as particle velocities by using a novel fibre optical probe in a fluidized bed of 400 mm I.D. Simulations and experiments were carried out for three different cases using Geldart B type aluminium oxide particles: a freely bubbling fluidized bed; a spout fluidized bed without the presence of droplets and a spout fluidized bed with the presence of droplets. It is demonstrated how the discrete element model can be used to obtain information about the interaction of the discrete phases, i.e. the growth zone in a spout fluidized bed. Eventually this kind of information can be used to obtain closure information required in more coarse grained models

    A small scale regularly packed circulating fluidized bed. Part I: Hydrodynamics.

    Get PDF
    The present investigation is based on the idea of intensifying the gas¿solids contact in a circulating fluidized bed by introducing obstacles into it. Such obstacles may effectively suppress radial inhomogeneities in the solids flux and concentration, increase the dynamic solids hold-up, and break up solids clusters. This article (Part I) deals with the hydrodynamics (pressure drop and solids hold-up) investigated at ambient conditions, for cocurrent upward flow of air and microsize solid particles (FCC, 70 µm diameter) over a regularly structured inert packing introduced into the riser part of a circulating fluidized bed unit. The packed section has a height of 0.48 m, a cross-sectional area of 0.06 × 0.06 m2 and contains regularly-stacked 0.01 m diameter Perspex bars as the obstacles meant to enhance the gas¿solids contact. Slide-valves mounted above and below the packed section can be used to trap the solids inventory and determine the (dynamic) solids hold-up. Gas and solids mass fluxes have been varied in the range of 0.7 < Gg < 4.4 and O < Gs < 15 kg m-2s-2, respectively. Part II will report on the results of gas¿solids mass transfer measurements, which have been carried out in the same set-up at comparable experimental conditions. Results of this work show that: (i) the pressure gradient over the packed section increases linearly with increasing solids mass flux, but faster than linearly with increasing applied gas mass flux, (ii) the dynamic solids volume fraction can be described quite well by the correlation ß dyn = 0.0084 GsGg-1.22 for almost the entire range of applied gas and solids mass fluxes, (iii) the value for the solids friction factor derived for the gas flux range 0.7 < Gg < 3.7 kg (m-2s-1) varies from 1.4 to 2.5 and is linear with the solids volume fraction. These fs values are about 2 to 3 decades higher than those obtained from fs correlations derived for dilute-phase pneumatic conveying lines operated under the same experimental conditions

    Advanced heat receiver conceptual design study

    Get PDF
    Solar Dynamic space power systems are candidate electrical power generating systems for future NASA missions. One of the key components of the solar dynamic power system is the solar receiver/thermal energy storage (TES) subsystem. Receiver development was conducted by NASA in the late 1960's and since then a very limited amount of work has been done in this area. Consequently the state of the art (SOA) receivers designed for the IOC space station are large and massive. The objective of the Advanced Heat Receiver Conceptual Design Study is to conceive and analyze advanced high temperature solar dynamic Brayton and Stirling receivers. The goal is to generate innovative receiver concepts that are half of the mass, smaller, and more efficient than the SOA. It is also necessary that these innovative receivers offer ease of manufacturing, less structural complexity and fewer thermal stress problems. Advanced Brayton and Stirling receiver storage units are proposed and analyzed in this study which can potentially meet these goals

    A review of solar methane reforming systems

    Get PDF
    Because of the increasing demand for energy and the associated rise in greenhouse gas emissions, there is much interest in the use of renewable sources such as solar energy in electricity and fuels generation. One problem with solar energy, however, is that it is difficult to economically convert the radiation into usable energy at the desired locations and times, both daily and seasonally. One method to overcome this space-time intermittency is through the production of chemical fuels. In particular, solar reforming is a promising method for producing chemical fuels by reforming and/or water/carbon dioxide splitting. In this paper, a review of solar reforming systems is presented, as well as a comparison between these systems and a discussion on areas for potential innovation including chemical looping and membrane reactors. Moreover, a brief overview of catalysis in the context of reforming is presented

    To convert bitumen powder to bitumen emulsion

    Get PDF
    Bitumen is an important organic liquid in the nature. The main characteristics which are highly viscous, black, sticky make bitumen are the suitable to use in paving road .This is a major application for bitumen otherwise also use as an intermediate product for roof surfacing, waterproof boats and others. By emulsifying process, bitumen emulsion was creating to reduce the viscosity and get lower temperature for spraying or mixing purposes. But in bitumen emulsion industries, packaging maintenance is a major problem. High cost in packaging because of only drum and large tank is suitable to use for commercialized. For this research, the problem will be solving by converting bitumen emulsion to bitumen powder. Silicon dioxide was used as an additive to produce bitumen powder from bitumen emulsion. The trade name of silicon dioxide is SIPERNAT an is use as a powdering agent for manufacturing fine-particle powders with good dispersion characteristics In previous invention silicon dioxide is used as a additive to convert liquid bitumen to powder To remove the water from bitumen emulsion drying method was applied by using spray dryer

    Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor

    Full text link
    Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6cm-diameter spheres draining in a cylindrical vessel of diameter 3.5m and height 10m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.Comment: 18 pages, 21 figure

    Fluidization In Conical Bed And Computational Fluid Dynamics Modeling Of The Bed

    Get PDF
    Fluidization is the operation by which fine solids are transformed into a fluid like state through contact with a gas or liquid. This method of contacting has a number of unusual characteristics and fluidization engineering is concerned with efforts to take advantage of this behaviour and put it to good use. Most of the gas solid fluidization behaviour studies have been performed in conventional or columnar fluidized bed, but industrial fluidized beds are frequently manufactured with a conical or tapered section at the bottom. The use of conical fluidized beds is beginning to receive much attention for biochemical reactions and biological treatment of waste water, also been used successfully in chemical reactions, crystallizations and in other areas. In this paper, the bed hydrodynamics especially pressure drop, and minimum fluidization velocity in terms of superficial velocity at the bottom of the bed, and flow regimes, such as fixed bed, partially fluidized bed and fluidized bed, is to be studied successively with the increase of superficial gas velocity in a conical bed with different bed height, particle size both experimentally and by computational fluid dynamics modelling of the bed using Ansys 13.0. The results have been compared with the calculated data from the experimental work and have been found to agree well

    Mars Atmospheric Conversion to Methane and Water: An Engineering Model of the Sabatier Reactor with Characterization of Ru/Al2O3 for Long Duration Use on Mars

    Get PDF
    The Atmospheric Processing Module (APM) is a Mars In-Situ Resource Utilization (ISRU) technology designed to demonstrate conversion of the Martian atmosphere into methane and water. The Martian atmosphere consists of approximately 95 carbon dioxide (CO2) and residual argon and nitrogen. APM utilizes cryocoolers for CO2 acquisition from a simulated Martian atmosphere and pressure. The captured CO2 is sublimated and pressurized as a feedstock into the Sabatier reactor, which converts CO2 and hydrogen to methane and water. The Sabatier reaction occurs over a packed bed reactor filled with Ru/Al2O3 pellets. The long duration use of the APM system and catalyst was investigated for future scaling and failure limits. Failure of the catalyst was detected by gas chromatography and temperature sensors on the system. Following this, characterization and experimentation with the catalyst was carried out with analysis including x-ray photoelectron spectroscopy and scanning electron microscopy with elemental dispersive spectroscopy. This paper will discuss results of the catalyst performance, the overall APM Sabatier approach, as well as intrinsic catalyst considerations of the Sabatier reactor performance incorporated into a chemical model

    Thermal and Catalytic Cracking of JP-10 for Pulse Detonation Engine Applications

    Get PDF
    Practical air-breathing pulse detonation engines (PDE) will be based on storable liquid hydrocarbon fuels such as JP-10 or Jet A. However, such fuels are not optimal for PDE operation due to the high energy input required for direct initiation of a detonation and the long deflagration-to-detonation transition times associated with low-energy initiators. These effects increase cycle time and reduce time-averaged thrust, resulting in a significant loss of performance. In an effort to utilize such conventional liquid fuels and still maintain the performance of the lighter and more sensitive hydrocarbon fuels, various fuel modification schemes such as thermal and catalytic cracking have been investigated. We have examined the decomposition of JP-10 through thermal and catalytic cracking mechanisms at elevated temperatures using a bench-top reactor system. The system has the capability to vaporize liquid fuel at precise flowrates while maintaining the flow path at elevated temperatures and pressures for extended periods of time. The catalytic cracking tests were completed utilizing common industrial zeolite catalysts installed in the reactor. A gas chromatograph with a capillary column and flame ionization detector, connected to the reactor output, is used to speciate the reaction products. The conversion rate and product compositions were determined as functions of the fuel metering rate, reactor temperature, system backpressure, and zeolite type. An additional study was carried out to evaluate the feasibility of using pre-mixed rich combustion to partially oxidize JP-10. A mixture of partially oxidized products was initially obtained by rich combustion in JP-10 and air mixtures for equivalence ratios between 1 and 5. Following the first burn, air was added to the products, creating an equivalent stoichiometric mixture. A second burn was then carried out. Pressure histories and schlieren video images were recorded for both burns. The results were analyzed by comparing the peak and final pressures to idealized thermodynamic predictions
    corecore