175 research outputs found

    The Bergman complex of a matroid and phylogenetic trees

    Get PDF
    We study the Bergman complex B(M) of a matroid M: a polyhedral complex which arises in algebraic geometry, but which we describe purely combinatorially. We prove that a natural subdivision of the Bergman complex of M is a geometric realization of the order complex of its lattice of flats. In addition, we show that the Bergman fan B'(K_n) of the graphical matroid of the complete graph K_n is homeomorphic to the space of phylogenetic trees T_n.Comment: 15 pages, 6 figures. Reorganized paper and updated references. To appear in J. Combin. Theory Ser.

    Tropicalization of classical moduli spaces

    Full text link
    The image of the complement of a hyperplane arrangement under a monomial map can be tropicalized combinatorially using matroid theory. We apply this to classical moduli spaces that are associated with complex reflection arrangements. Starting from modular curves, we visit the Segre cubic, the Igusa quartic, and moduli of marked del Pezzo surfaces of degrees 2 and 3. Our primary example is the Burkhardt quartic, whose tropicalization is a 3-dimensional fan in 39-dimensional space. This effectuates a synthesis of concrete and abstract approaches to tropical moduli of genus 2 curves.Comment: 33 page

    A Combinatorial Formula for Principal Minors of a Matrix with Tree-metric Exponents and Its Applications

    Full text link
    Let TT be a tree with a vertex set {1,2,,N}\{ 1,2,\dots, N \}. Denote by dijd_{ij} the distance between vertices ii and jj. In this paper, we present an explicit combinatorial formula of principal minors of the matrix (tdij)(t^{d_{ij}}), and its applications to tropical geometry, study of multivariate stable polynomials, and representation of valuated matroids. We also give an analogous formula for a skew-symmetric matrix associated with TT.Comment: 16 page

    A-Tint: A polymake extension for algorithmic tropical intersection theory

    Full text link
    In this paper we study algorithmic aspects of tropical intersection theory. We analyse how divisors and intersection products on tropical cycles can actually be computed using polyhedral geometry. The main focus of this paper is the study of moduli spaces, where the underlying combinatorics of the varieties involved allow a much more efficient way of computing certain tropical cycles. The algorithms discussed here have been implemented in an extension for polymake, a software for polyhedral computations.Comment: 32 pages, 5 figures, 4 tables. Second version: Revised version, to be published in European Journal of Combinatoric
    corecore