62 research outputs found

    Adversarial Unsupervised Representation Learning for Activity Time-Series

    Full text link
    Sufficient physical activity and restful sleep play a major role in the prevention and cure of many chronic conditions. Being able to proactively screen and monitor such chronic conditions would be a big step forward for overall health. The rapid increase in the popularity of wearable devices provides a significant new source, making it possible to track the user's lifestyle real-time. In this paper, we propose a novel unsupervised representation learning technique called activity2vec that learns and "summarizes" the discrete-valued activity time-series. It learns the representations with three components: (i) the co-occurrence and magnitude of the activity levels in a time-segment, (ii) neighboring context of the time-segment, and (iii) promoting subject-invariance with adversarial training. We evaluate our method on four disorder prediction tasks using linear classifiers. Empirical evaluation demonstrates that our proposed method scales and performs better than many strong baselines. The adversarial regime helps improve the generalizability of our representations by promoting subject invariant features. We also show that using the representations at the level of a day works the best since human activity is structured in terms of daily routinesComment: Accepted at AAAI'19. arXiv admin note: text overlap with arXiv:1712.0952

    Neural activity classification with machine learning models trained on interspike interval series data

    Full text link
    The flow of information through the brain is reflected by the activity patterns of neural cells. Indeed, these firing patterns are widely used as input data to predictive models that relate stimuli and animal behavior to the activity of a population of neurons. However, relatively little attention was paid to single neuron spike trains as predictors of cell or network properties in the brain. In this work, we introduce an approach to neuronal spike train data mining which enables effective classification and clustering of neuron types and network activity states based on single-cell spiking patterns. This approach is centered around applying state-of-the-art time series classification/clustering methods to sequences of interspike intervals recorded from single neurons. We demonstrate good performance of these methods in tasks involving classification of neuron type (e.g. excitatory vs. inhibitory cells) and/or neural circuit activity state (e.g. awake vs. REM sleep vs. nonREM sleep states) on an open-access cortical spiking activity dataset
    • …
    corecore