1,025 research outputs found

    New Optimal Binary Sequences with Period 4p4p via Interleaving Ding-Helleseth-Lam Sequences

    Full text link
    Binary sequences with optimal autocorrelation play important roles in radar, communication, and cryptography. Finding new binary sequences with optimal autocorrelation has been an interesting research topic in sequence design. Ding-Helleseth-Lam sequences are such a class of binary sequences of period pp, where pp is an odd prime with p≡1( mod  4)p\equiv 1(\bmod~4). The objective of this letter is to present a construction of binary sequences of period 4p4p via interleaving four suitable Ding-Helleseth-Lam sequences. This construction generates new binary sequences with optimal autocorrelation which can not be produced by earlier ones

    System performance criteria in CDMA networks using gold codes

    Get PDF
    First, we have presented the autocorrelation and crosscorrelation properties for periodic and aperiodic binary sequences. The generation of binary sequences using shift registers with feedback was reviewed. We have also included correlation properties for the Gold codes. Next, we discussed Gold code generation for the balanced and unbalanced Gold codes. Thirdly, we investigated the number of simultaneous users in a CDMA system using Gold codes for the worst case and the average case of mutual interference. Finally, we simulated the probability of interference exceeding a threshold value, and the average crosscorrelation value caused by interference in a CDMA network which is using a Gold code. We compared probability and average crosscorrelation values simulated with theoretical bounds calculated. Here the simulation programs are done in C computer language

    Correlation properties of interleaved Legendre sequences and Ding-Helleseth-Lam sequences

    Get PDF
    Sequences with optimal autocorrelation properties play an important role in wireless communication, radar and cryptography. Interleaving is a very important method in constructing the optimal autocorrelation sequence. Tang and Gong gave three different constructions of interleaved sequences (generalized GMW sequences, twin prime sequences and Legendre sequences). Su et al. constructed a series of sequences with optimal autocorrelation magnitude via interleaving Ding-Helleseth-Lam sequences. In this paper we further study the correlation properties of interleaved Legendre sequences and Ding-Helleseth-Lam sequences

    Code design and analysis for multiple access communications

    Get PDF
    This thesis explores various coding aspects of multiple access communications, mainly for spread spectrum multiaccess(SSMA) communications and collaborative coding multiaccess(CCMA) communications. Both the SSMA and CCMA techniques permit efficient simultaneous transmission by several users sharing a common channel, without subdivision in time or frequency. The general principle behind these two multiaccess schemes is that one can find sets of signals (codes) which can be combined together to form a composite signal; on reception, the individual signals in the set can each be recovered from the composite signal. For the CCMA scheme, the isolation between users is based on the code structure; for the SSMA scheme, on the other hand, the isolation between users is based on the autocorrelation functions(ACFs) and crosscorrelation functions (CCFs) of the code sequences. It is clear that, in either case, the code design is the key to the system design.For the CCMA system with a multiaccess binary adder channel, a class of superimposed codes is analyzed. It is proved that every constant weight code of weight w and maximal correlation λ corresponds to a subclass of disjunctive codes of order T 3, the out-of-phase ACFs and CCFs of the codes are constant and equal to √L. In addition, all codes of the same length are mutually orthogonal.2. Maximal length sequences (m-sequences) over Gaussian integers, suitable for use with QAM modulation, are considered. Two sub-classes of m-sequences with quasi-perfect periodic autocorrelations are obtained. The CCFs between the decimated m-sequences are studied. By applying a simple operation, it is shown that some m-sequences over rational and Gaussian integers can be transformed into perfect sequences with impulsive ACFs.3. Frank codes and Chu codes have perfect periodic ACFs and optimum periodic CCFs. In addition, it is shown that they also have very favourable nonperiodic ACFs; some new results concerning the behaviour of the nonperiodic ACFs are derived. Further, it is proved that the sets of combinedFrank/Chu codes, which contain a larger number of codes than either of the two constituent sets, also have very good periodic CCFs. Based on Frank codes and Chu codes, two interesting classes of real-valued codes with good correlation properties are defined. It is shown that these codes have periodic complementary properties and good periodic and nonperiodic ACF/CCFs.Finally, a hybrid CCMA/SSMA coding scheme is proposed. This new hybrid coding scheme provides a very flexible and powerful multiple accessing capability and allows simple and efficient decoding. Given an SSMA system with K users and a CCMA system with N users, where at most T users are active at any time, then the hybrid system will have K . N users with at most T.K users active at any time. The hybrid CCMA/SSMA coding scheme is superior to the individual CCMA system or SSMA system in terms of information rate, number of users, decoding complexity and external interference rejection capability
    • …
    corecore