280 research outputs found

    Problems on q-Analogs in Coding Theory

    Full text link
    The interest in qq-analogs of codes and designs has been increased in the last few years as a consequence of their new application in error-correction for random network coding. There are many interesting theoretical, algebraic, and combinatorial coding problems concerning these q-analogs which remained unsolved. The first goal of this paper is to make a short summary of the large amount of research which was done in the area mainly in the last few years and to provide most of the relevant references. The second goal of this paper is to present one hundred open questions and problems for future research, whose solution will advance the knowledge in this area. The third goal of this paper is to present and start some directions in solving some of these problems.Comment: arXiv admin note: text overlap with arXiv:0805.3528 by other author

    Linear programming bounds for codes in Grassmannian spaces

    Full text link
    We introduce a linear programming method to obtain bounds on the cardinality of codes in Grassmannian spaces for the chordal distance. We obtain explicit bounds, and an asymptotic bound that improves on the Hamming bound. Our approach generalizes the approach originally developed by P. Delsarte and Kabatianski-Levenshtein for compact two-point homogeneous spaces.Comment: 35 pages, 1 figur

    Density of Spherically-Embedded Stiefel and Grassmann Codes

    Full text link
    The density of a code is the fraction of the coding space covered by packing balls centered around the codewords. This paper investigates the density of codes in the complex Stiefel and Grassmann manifolds equipped with the chordal distance. The choice of distance enables the treatment of the manifolds as subspaces of Euclidean hyperspheres. In this geometry, the densest packings are not necessarily equivalent to maximum-minimum-distance codes. Computing a code's density follows from computing: i) the normalized volume of a metric ball and ii) the kissing radius, the radius of the largest balls one can pack around the codewords without overlapping. First, the normalized volume of a metric ball is evaluated by asymptotic approximations. The volume of a small ball can be well-approximated by the volume of a locally-equivalent tangential ball. In order to properly normalize this approximation, the precise volumes of the manifolds induced by their spherical embedding are computed. For larger balls, a hyperspherical cap approximation is used, which is justified by a volume comparison theorem showing that the normalized volume of a ball in the Stiefel or Grassmann manifold is asymptotically equal to the normalized volume of a ball in its embedding sphere as the dimension grows to infinity. Then, bounds on the kissing radius are derived alongside corresponding bounds on the density. Unlike spherical codes or codes in flat spaces, the kissing radius of Grassmann or Stiefel codes cannot be exactly determined from its minimum distance. It is nonetheless possible to derive bounds on density as functions of the minimum distance. Stiefel and Grassmann codes have larger density than their image spherical codes when dimensions tend to infinity. Finally, the bounds on density lead to refinements of the standard Hamming bounds for Stiefel and Grassmann codes.Comment: Two-column version (24 pages, 6 figures, 4 tables). To appear in IEEE Transactions on Information Theor

    A bound on Grassmannian codes

    Get PDF
    We give a new asymptotic upper bound on the size of a code in the Grassmannian space. The bound is better than the upper bounds known previously in the entire range of distances except very large values.Comment: 5 pages, submitte

    On block coherence of frames

    Get PDF
    Block coherence of matrices plays an important role in analyzing the performance of block compressed sensing recovery algorithms (Bajwa and Mixon, 2012). In this paper, we characterize two block coherence metrics: worst-case and average block coherence. First, we present lower bounds on worst-case block coherence, in both the general case and also when the matrix is constrained to be a union of orthobases. We then present deterministic matrix constructions based upon Kronecker products which obtain these lower bounds. We also characterize the worst-case block coherence of random subspaces. Finally, we present a flipping algorithm that can improve the average block coherence of a matrix, while maintaining the worst-case block coherence of the original matrix. We provide numerical examples which demonstrate that our proposed deterministic matrix construction performs well in block compressed sensing

    Coding for Errors and Erasures in Random Network Coding

    Get PDF
    The problem of error-control in random linear network coding is considered. A ``noncoherent'' or ``channel oblivious'' model is assumed where neither transmitter nor receiver is assumed to have knowledge of the channel transfer characteristic. Motivated by the property that linear network coding is vector-space preserving, information transmission is modelled as the injection into the network of a basis for a vector space VV and the collection by the receiver of a basis for a vector space UU. A metric on the projective geometry associated with the packet space is introduced, and it is shown that a minimum distance decoder for this metric achieves correct decoding if the dimension of the space V∩UV \cap U is sufficiently large. If the dimension of each codeword is restricted to a fixed integer, the code forms a subset of a finite-field Grassmannian, or, equivalently, a subset of the vertices of the corresponding Grassmann graph. Sphere-packing and sphere-covering bounds as well as a generalization of the Singleton bound are provided for such codes. Finally, a Reed-Solomon-like code construction, related to Gabidulin's construction of maximum rank-distance codes, is described and a Sudan-style ``list-1'' minimum distance decoding algorithm is provided.Comment: This revised paper contains some minor changes and clarification

    Random Subsets of Structured Deterministic Frames have MANOVA Spectra

    Full text link
    We draw a random subset of kk rows from a frame with nn rows (vectors) and mm columns (dimensions), where kk and mm are proportional to nn. For a variety of important deterministic equiangular tight frames (ETFs) and tight non-ETF frames, we consider the distribution of singular values of the kk-subset matrix. We observe that for large nn they can be precisely described by a known probability distribution -- Wachter's MANOVA spectral distribution, a phenomenon that was previously known only for two types of random frames. In terms of convergence to this limit, the kk-subset matrix from all these frames is shown to be empirically indistinguishable from the classical MANOVA (Jacobi) random matrix ensemble. Thus empirically the MANOVA ensemble offers a universal description of the spectra of randomly selected kk-subframes, even those taken from deterministic frames. The same universality phenomena is shown to hold for notable random frames as well. This description enables exact calculations of properties of solutions for systems of linear equations based on a random choice of kk frame vectors out of nn possible vectors, and has a variety of implications for erasure coding, compressed sensing, and sparse recovery. When the aspect ratio m/nm/n is small, the MANOVA spectrum tends to the well known Marcenko-Pastur distribution of the singular values of a Gaussian matrix, in agreement with previous work on highly redundant frames. Our results are empirical, but they are exhaustive, precise and fully reproducible
    • …
    corecore