47,913 research outputs found

    Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells

    Get PDF
    BACKGROUND: Engineered nanoparticles (NP) are being developed for inhaled drug delivery. This route is non-invasive and the major target; alveolar epithelium provides a large surface area for drug administration and absorption, without first pass metabolism. Understanding the interaction between NPs and target cells is crucial for safe and effective NP-based drug delivery. We explored the differential effect of neutral, cationic and anionic polystyrene latex NPs on the target cells of the human alveolus, using primary human alveolar macrophages (MAC) and primary human alveolar type 2 (AT2) epithelial cells and a unique human alveolar epithelial type I-like cell (TT1). We hypothesized that the bioreactivity of the NPs would relate to their surface chemistry, charge and size as well as the functional role of their interacting cells in vivo. METHODS: Amine- (ANP) and carboxyl- surface modified (CNP) and unmodified (UNP) polystyrene NPs, 50 and 100 nm in diameter, were studied. Cells were exposed to 1–100 μg/ml (1.25-125 μg/cm(2); 0 μg/ml control) NP for 4 and 24 h at 37 °C with or without the antioxidant, N-acetyl cysteine (NAC). Cells were assessed for cell viability, reactive oxygen species (ROS), oxidised glutathione (GSSG/GSH ratio), mitochondrial integrity, cell morphology and particle uptake (using electron microscopy and laser scanning confocal microscopy). RESULTS: ANP-induced cell death occurred in all cell types, inducing increased oxidative stress, mitochondrial disruption and release of cytochrome C, indicating apoptotic cell death. UNP and CNP exhibited little cytotoxicity or mitochondrial damage, although they induced ROS in AT2 and MACs. Addition of NAC reduced epithelial cell ROS, but not MAC ROS, for up to 4 h. TT1 and MAC cells internalised all NP formats, whereas only a small fraction of AT2 cells internalized ANP (not UNP or CNP). TT1 cells were the most resistant to the effects of UNP and CNP. CONCLUSION: ANP induced marked oxidative damage and cell death via apoptosis in all cell types, while UNP and CNP exhibited low cytotoxicity via oxidative stress. MAC and TT1 cell models show strong particle-internalization compared to the AT2 cell model, reflecting their cell function in vivo. The 50 nm NPs induced a higher bioreactivity in epithelial cells, whereas the 100 nm NPs show a stronger effect on phagocytic cells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12989-015-0091-7) contains supplementary material, which is available to authorized users

    ONLINE MONITORING USING KISMET

    Get PDF
    Colleges and universities currently use online exams for student evaluation. Stu- dents can take assigned exams using their laptop computers and email their results to their instructor; this process makes testing more efficient and convenient for both students and faculty. However, taking exams while connected to the Internet opens many opportunities for plagiarism and cheating. In this project, we design, implement, and test a tool that instructors can use to monitor the online activity of students during an in-class online examination. This tool uses a wireless sniffer, Kismet, to capture and classify packets in real time. If a student attempts to access a site that is not allowed, the instructor is notified via an Android application or via Internet. Identifying a student who is cheating is challenging since many applications send packets without user intervention. We provide experimental results from realistic test environments to illustrate the success of our proposed approach

    High-Speed Train Cell-less Network Enabled by XGS-PON and Impacts on vRAN Split Interface Transmission

    Full text link
    We successfully demonstrate a transmission of a high layer split mobile interface for cell-less, high-speed train network applications using a commercially available XGS-PON. Operation is also demonstrated for a GbE interface

    WebChem Viewer: a tool for the easy dissemination of chemical and structural data sets.

    Get PDF
    BackgroundSharing sets of chemical data (e.g., chemical properties, docking scores, etc.) among collaborators with diverse skill sets is a common task in computer-aided drug design and medicinal chemistry. The ability to associate this data with images of the relevant molecular structures greatly facilitates scientific communication. There is a need for a simple, free, open-source program that can automatically export aggregated reports of entire chemical data sets to files viewable on any computer, regardless of the operating system and without requiring the installation of additional software.ResultsWe here present a program called WebChem Viewer that automatically generates these types of highly portable reports. Furthermore, in designing WebChem Viewer we have also created a useful online web application for remotely generating molecular structures from SMILES strings. We encourage the direct use of this online application as well as its incorporation into other software packages.ConclusionsWith these features, WebChem Viewer enables interdisciplinary collaborations that require the sharing and visualization of small molecule structures and associated sets of heterogeneous chemical data. The program is released under the FreeBSD license and can be downloaded from http://nbcr.ucsd.edu/WebChemViewer. The associated web application (called "Smiley2png 1.0") can be accessed through freely available web services provided by the National Biomedical Computation Resource at http://nbcr.ucsd.edu
    • …
    corecore