48 research outputs found

    Performance Analysis of Project-and-Forward Relaying in Mixed MIMO-Pinhole and Rayleigh Dual-Hop Channel

    Full text link
    In this letter, we present an end-to-end performance analysis of dual-hop project-and-forward relaying in a realistic scenario, where the source-relay and the relay-destination links are experiencing MIMO-pinhole and Rayleigh channel conditions, respectively. We derive the probability density function of both the relay post-processing and the end-to-end signal-to-noise ratios, and the obtained expressions are used to derive the outage probability of the analyzed system as well as its end-to-end ergodic capacity in terms of generalized functions. Applying then the residue theory to Mellin-Barnes integrals, we infer the system asymptotic behavior for different channel parameters. As the bivariate Meijer-G function is involved in the analysis, we propose a new and fast MATLAB implementation enabling an automated definition of the complex integration contour. Extensive Monte-Carlo simulations are invoked to corroborate the analytical results.Comment: 4 pages, IEEE Communications Letters, 201

    On the Performance of MIMO FSO Communications over Double Generalized Gamma Fading Channels

    Full text link
    A major performance degrading factor in free space optical communication (FSO) systems is atmospheric turbulence. Spatial diversity techniques provide a promising approach to mitigate turbulence-induced fading. In this paper, we study the error rate performance of FSO links with spatial diversity over atmospheric turbulence channels described by the Double Generalized Gamma distribution which is a new generic statistical model covering all turbulence conditions. We assume intensity modulation/direct detection with on-off keying and present the BER performance of single-input multiple-output (SIMO), multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) FSO systems over this new channel model.Comment: 6 Pages, 4 figure, IEEE ICC conference 201

    Impact of Pointing Errors on the Performance of Mixed RF/FSO Dual-Hop Transmission Systems

    Full text link
    In this work, the performance analysis of a dual-hop relay transmission system composed of asymmetric radio-frequency (RF)/free-space optical (FSO) links with pointing errors is presented. More specifically, we build on the system model presented in [1] to derive new exact closed-form expressions for the cumulative distribution function, probability density function, moment generating function, and moments of the end-to-end signal-to-noise ratio in terms of the Meijer's G function. We then capitalize on these results to offer new exact closed-form expressions for the higher-order amount of fading, average error rate for binary and M-ary modulation schemes, and the ergodic capacity, all in terms of Meijer's G functions. Our new analytical results were also verified via computer-based Monte-Carlo simulation results.Comment: 6 pages, 3 figure
    corecore