2,257 research outputs found

    Deciding the Borel complexity of regular tree languages

    Full text link
    We show that it is decidable whether a given a regular tree language belongs to the class Δ20{\bf \Delta^0_2} of the Borel hierarchy, or equivalently whether the Wadge degree of a regular tree language is countable.Comment: 15 pages, 2 figure

    Coarsening rates for the dynamics of slipping droplets

    Full text link
    We derive reduced finite dimensional ODE models starting from one dimensional lubrication equations describing coarsening dynamics of droplets in nanometric polymer film interacting on a hydrophobically coated solid substrate in the presence of large slippage at the liquid/solid interface. In the limiting case of infinite slip length corresponding in applications to free films a collision/absorption model then arises and is solved explicitly. The exact coarsening law is derived for it analytically and confirmed numerically. Existence of a threshold for the decay of initial distributions of droplet distances at infinity at which the coarsening rates switch from algebraic to exponential ones is shown

    08271 Abstracts Collection -- Topological and Game-Theoretic Aspects of Infinite Computations

    Get PDF
    From June 29, 2008, to July 4, 2008, the Dagstuhl Seminar 08271 ``Topological and Game-Theoretic Aspects of Infinite Computations\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, many participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Scale invariance and dynamic phase transitions in diffusion-limited reactions

    Full text link
    Many systems that can be described in terms of diffusion-limited `chemical' reactions display non-equilibrium continuous transitions separating active from inactive, absorbing states, where stochastic fluctuations cease entirely. Their critical properties can be analyzed via a path-integral representation of the corresponding classical master equation, and the dynamical renormalization group. An overview over the ensuing universality classes in single-species processes is given, and generalizations to reactions with multiple particle species are discussed as well. The generic case is represented by the processes A A + A, and A -> 0, which map onto Reggeon field theory with the critical exponents of directed percolation (DP). For branching and annihilating random walks (BARW) A -> (m+1) A and A + A -> 0, the mean-field rate equation predicts an active state only. Yet BARW with odd m display a DP transition for d <= 2. For even offspring number m, the particle number parity is conserved locally. Below d_c' = 4/3, this leads to the emergence of an inactive phase that is characterized by the power laws of the pair annihilation process. The critical exponents at the transition are those of the `parity-conserving' (PC) universality class. For local processes without memory, competing pair or triplet annihilation and fission reactions k A -> (k - l) A, k A -> (k+m)A with k=2,3 appear to yield the only other universality classes not described by mean-field theory. In these reactions, site occupation number restrictions play a crucial role.Comment: 16 pages, talk given at 2003 German Physical Society Spring Meeting; four figures and style files include

    An algebraic multigrid method for Q2Q1Q_2-Q_1 mixed discretizations of the Navier-Stokes equations

    Full text link
    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Specifically, we investigate a Q2Q1Q_2-Q_1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches leveraging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocity dof relationships of the Q2Q1Q_2-Q_1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the finest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.Comment: Submitted to a journa

    Characterizing the Shape of Activation Space in Deep Neural Networks

    Full text link
    The representations learned by deep neural networks are difficult to interpret in part due to their large parameter space and the complexities introduced by their multi-layer structure. We introduce a method for computing persistent homology over the graphical activation structure of neural networks, which provides access to the task-relevant substructures activated throughout the network for a given input. This topological perspective provides unique insights into the distributed representations encoded by neural networks in terms of the shape of their activation structures. We demonstrate the value of this approach by showing an alternative explanation for the existence of adversarial examples. By studying the topology of network activations across multiple architectures and datasets, we find that adversarial perturbations do not add activations that target the semantic structure of the adversarial class as previously hypothesized. Rather, adversarial examples are explainable as alterations to the dominant activation structures induced by the original image, suggesting the class representations learned by deep networks are problematically sparse on the input space

    Integrable viscous conservation laws

    Get PDF
    We propose an extension of the Dubrovin-Zhang perturbative approach to the study of normal forms for non-Hamiltonian integrable scalar conservation laws. The explicit computation of the first few corrections leads to the conjecture that such normal forms are parameterized by one single functional parameter, named viscous central invariant. A constant valued viscous central invariant corresponds to the well-known Burgers hierarchy. The case of a linear viscous central invariant provides a viscous analog of the Camassa-Holm equation, that formerly appeared as a reduction of a two-component Hamiltonian integrable systems. We write explicitly the negative and positive hierarchy associated with this equation and prove the integrability showing that they can be mapped respectively into the heat hierarchy and its negative counterpart, named the Klein-Gordon hierarchy. A local well-posedness theorem for periodic initial data is also proven. We show how transport equations can be used to effectively construct asymptotic solutions via an extension of the quasi-Miura map that preserves the initial datum. The method is alternative to the method of the string equation for Hamiltonian conservation laws and naturally extends to the viscous case. Using these tools we derive the viscous analog of the Painlevé I2 equation that describes the universal behaviour of the solution at the critical point of gradient catastrophe
    corecore