205 research outputs found

    A posteriori error estimators for nonconforming finite element methods of the linear elasticity problem

    Get PDF
    AbstractIn this work we derive and analyze a posteriori error estimators for low-order nonconforming finite element methods of the linear elasticity problem on both triangular and quadrilateral meshes, with hanging nodes allowed for local mesh refinement. First, it is shown that equilibrated Neumann data on interelement boundaries are simply given by the local weak residuals of the numerical solution. The first error estimator is then obtained by applying the equilibrated residual method with this set of Neumann data. From this implicit estimator we also derive two explicit error estimators, one of which is similar to the one proposed by Dörfler and Ainsworth (2005) [24] for the Stokes problem. It is established that all these error estimators are reliable and efficient in a robust way with respect to the Lamé constants. The main advantage of our error estimators is that they yield guaranteed, i.e., constant-free upper bounds for the energy-like error (up to higher order terms due to data oscillation) when a good estimate for the inf–sup constant is available, which is confirmed by some numerical results

    Computational Engineering

    Get PDF
    The focus of this Computational Engineering Workshop was on the mathematical foundation of state-of-the-art and emerging finite element methods in engineering analysis. The 52 participants included mathematicians and engineers with shared interest on discontinuous Galerkin or Petrov-Galerkin methods and other generalized nonconforming or mixed finite element methods

    Quasi-optimal adaptive hybridized mixed finite element methods for linear elasticity

    Full text link
    For the planar Navier--Lam\'e equation in mixed form with symmetric stress tensors, we prove the uniform quasi-optimal convergence of an adaptive method based on the hybridized mixed finite element proposed in [Gong, Wu, and Xu: Numer.~Math., 141 (2019), pp.~569--604]. The main ingredients in the analysis consist of a discrete a posteriori upper bound and a quasi-orthogonality result for the stress field under the mixed boundary condition. Compared with existing adaptive methods, the proposed adaptive algorithm could be directly applied to the traction boundary condition and be easily implemented

    A Locking-Free Weak Galerkin Finite Element Method for Linear Elasticity Problems

    Full text link
    In this paper, we introduce and analyze a lowest-order locking-free weak Galerkin (WG) finite element scheme for the grad-div formulation of linear elasticity problems. The scheme uses linear functions in the interior of mesh elements and constants on edges (2D) or faces (3D), respectively, to approximate the displacement. An H(div)H(div)-conforming displacement reconstruction operator is employed to modify test functions in the right-hand side of the discrete form, in order to eliminate the dependence of the LameˊLam\acute{e} parameter λ\lambda in error estimates, i.e., making the scheme locking-free. The method works without requiring λ∥∇⋅u∥1\lambda \|\nabla\cdot \mathbf{u}\|_1 to be bounded. We prove optimal error estimates, independent of λ\lambda, in both the H1H^1-norm and the L2L^2-norm. Numerical experiments validate that the method is effective and locking-free

    Nonstandard Finite Element Methods

    Get PDF
    [no abstract available

    Taylor-Hood like finite elements for nearly incompressible strain gradient elasticity problems

    Full text link
    We propose a family of mixed finite elements that are robust for the nearly incompressible strain gradient model, which is a fourth-order singular perturbed elliptic system. The element is similar to [C. Taylor and P. Hood, Comput. & Fluids, 1(1973), 73-100] in the Stokes flow. Using a uniform discrete B-B inequality for the mixed finite element pairs, we show the optimal rate of convergence that is robust in the incompressible limit. By a new regularity result that is uniform in both the materials parameter and the incompressibility, we prove the method converges with 1/21/2 order to the solution with strong boundary layer effects. Moreover, we estimate the convergence rate of the numerical solution to the unperturbed second-order elliptic system. Numerical results for both smooth solutions and the solutions with sharp layers confirm the theoretical prediction.Comment: 27 pages, 1 figures, 4 table
    • …
    corecore