97,460 research outputs found

    The Accelerated Universe and the Moon

    Get PDF
    Cosmologically motivated theories that explain small acceleration rate of the Universe via modification of gravity at very large, horizon or super-horizon distances, can be tested by precision gravitational measurements at much shorter scales, such as the Earth-Moon distance. Contrary to the naive expectation the predicted corrections to the Einsteinian metric near gravitating sources are so significant that fall within sensitivity of the proposed Lunar Ranging experiments. The key reason for such corrections is the van Dam-Veltman-Zakharov discontinuity present in linearized versions of all such theories, and its subsequent absence at the non-linear level ala Vainshtein

    Quantum cosmology and the accelerated Universe

    Full text link
    The quantized Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) model minimally coupled to a free massless scalar field is studied and interpreted in the Bohm-de Broglie framework. We analyze the quantum bohmian trajectories corresponding to a certain class of gaussian packets, solutions of the Wheeler-DeWitt equation. We show that these bohmian trajectories undergo an accelerated expansion in the middle of its evolution due to the presence of quantum cosmological effects in this period. It is shown that the luminosity-redshift relation in the quantum cosmological model can be made close to the corresponding relation coming from the classical model suplemented by a cosmological constant, for z<1z<1. In this way we have the posibility of interpreting the present observations of high redshift supernovae as the consequence of a quantum cosmological effect.Comment: Talk given at X Marcell Grossmann Meeting, Rio de Janeiro, 2003. Added references and some minor typos correction

    Focusing of geodesic congruences in an accelerated expanding Universe

    Get PDF
    We study the accelerated expansion of the Universe through its consequences on a congruence of geodesics. We make use of the Raychaudhuri equation which describes the evolution of the expansion rate for a congruence of timelike or null geodesics. In particular, we focus on the space-time geometry contribution to this equation. By straightforward calculation from the metric of a Robertson-Walker cosmological model, it follows that in an accelerated expanding Universe the space-time contribution to the Raychaudhuri equation is positive for the fundamental congruence, favoring a non-focusing of the congruence of geodesics. However, the accelerated expansion of the present Universe does not imply a tendency of the fundamental congruence to diverge. It is shown that this is in fact the case for certain congruences of timelike geodesics without vorticity. Therefore, the focusing of geodesics remains feasible in an accelerated expanding Universe. Furthermore, a negative contribution to the Raychaudhuri equation from space-time geometry which is usually interpreted as the manifestation of the attractive character of gravity is restored in an accelerated expanding Robertson-Walker space-time at high speeds.Comment: 11 pages, 2 figures. Final version changed to match published version in JCAP. References updated. Conclusions unchange

    Cosmological Evolution Across Phantom Crossing and the Nature of the Horizon

    Full text link
    In standard cosmology, with the evolution of the universe, the matter density and thermodynamic pressure gradually decreases. Also in course of evolution, the matter in the universe obeys (or violates) some restrictions or energy conditions. If the matter distribution obeys strong energy condition (SEC), the universe is in a decelerating phase while violation of SEC indicates an accelerated expansion of the universe. In the period of accelerated expansion the matter may be either of quintessence nature or of phantom nature depending on the fulfilment of the weak energy condition (WEC) or violation of it. As recent observational evidences demand that the universe is going through an accelerated expansion so mater should be either quintessence or phantom in nature. In the present work we study the evolution of the universe through the phantom barrier (i.e. the dividing line between the quintessence and phantom era) and examine how apparent and event horizon change across the barrier. Finally, we investigate the possibility of occurrence of any singularity in phantom era.Comment: 7 pages and 4 figure

    Tachyon fields with effects of quantum matter in an Anti-de Sitter Universe

    Full text link
    We consider an Anti-de Sitter universe filled by quantum conformal matter with the contribution from the usual tachyon and a perfect fluid. The model represents the combination of a trace-anomaly annihilated and a tachyon driven Anti-de Sitter universe. The influence exerted by the quantum effects and by the tachyon on the AdS space is studied. The radius corresponding to this universe is calculated and the effect of the tachyon potential is discussed, in particular, concerning to the possibility to get an accelerated scale factor for the proposed model (implying an accelerated expansion of the AdS type of universe). Fulfillment of the cosmological energy conditions in the model is also investigatedComment: 14 Latex pages, no figure
    • …
    corecore