research

Quantum cosmology and the accelerated Universe

Abstract

The quantized Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) model minimally coupled to a free massless scalar field is studied and interpreted in the Bohm-de Broglie framework. We analyze the quantum bohmian trajectories corresponding to a certain class of gaussian packets, solutions of the Wheeler-DeWitt equation. We show that these bohmian trajectories undergo an accelerated expansion in the middle of its evolution due to the presence of quantum cosmological effects in this period. It is shown that the luminosity-redshift relation in the quantum cosmological model can be made close to the corresponding relation coming from the classical model suplemented by a cosmological constant, for z<1z<1. In this way we have the posibility of interpreting the present observations of high redshift supernovae as the consequence of a quantum cosmological effect.Comment: Talk given at X Marcell Grossmann Meeting, Rio de Janeiro, 2003. Added references and some minor typos correction

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019