24 research outputs found

    The 3D Menpo Facial Landmark Tracking Challenge

    Get PDF
    This is the final version of the article. It is the open access version, provided by the Computer Vision Foundation. Except for the watermark, it is identical to the IEEE published version. Available from IEEE via the DOI in this record.Test descriptionRecently, deformable face alignment is synonymous to the task of locating a set of 2D sparse landmarks in intensity images. Currently, discriminatively trained Deep Convolutional Neural Networks (DCNNs) are the state-of-the-art in the task of face alignment. DCNNs exploit large amount of high quality annotations that emerged the last few years. Nevertheless, the provided 2D annotations rarely capture the 3D structure of the face (this is especially evident in the facial boundary). That is, the annotations neither provide an estimate of the depth nor correspond to the 2D projections of the 3D facial structure. This paper summarises our efforts to develop (a) a very large database suitable to be used to train 3D face alignment algorithms in images captured "in-the-wild" and (b) to train and evaluate new methods for 3D face landmark tracking. Finally, we report the results of the first challenge in 3D face tracking "in-the-wild".The work of S. Zafeiriou and A. Roussos has been partially funded by the EPSRC Project EP/N007743/

    UV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face Recognition

    Full text link
    Recently proposed robust 3D face alignment methods establish either dense or sparse correspondence between a 3D face model and a 2D facial image. The use of these methods presents new challenges as well as opportunities for facial texture analysis. In particular, by sampling the image using the fitted model, a facial UV can be created. Unfortunately, due to self-occlusion, such a UV map is always incomplete. In this paper, we propose a framework for training Deep Convolutional Neural Network (DCNN) to complete the facial UV map extracted from in-the-wild images. To this end, we first gather complete UV maps by fitting a 3D Morphable Model (3DMM) to various multiview image and video datasets, as well as leveraging on a new 3D dataset with over 3,000 identities. Second, we devise a meticulously designed architecture that combines local and global adversarial DCNNs to learn an identity-preserving facial UV completion model. We demonstrate that by attaching the completed UV to the fitted mesh and generating instances of arbitrary poses, we can increase pose variations for training deep face recognition/verification models, and minimise pose discrepancy during testing, which lead to better performance. Experiments on both controlled and in-the-wild UV datasets prove the effectiveness of our adversarial UV completion model. We achieve state-of-the-art verification accuracy, 94.05%94.05\%, under the CFP frontal-profile protocol only by combining pose augmentation during training and pose discrepancy reduction during testing. We will release the first in-the-wild UV dataset (we refer as WildUV) that comprises of complete facial UV maps from 1,892 identities for research purposes

    Combining Dense Nonrigid Structure from Motion and 3D Morphable Models for Monocular 4D Face Reconstruction

    Get PDF
    This is the author accepted manuscript. The final version is available from ACM via the DOI in this record Monocular 4D face reconstruction is a challenging problem, especially in the case that the input video is captured under unconstrained conditions, i.e. "in the wild". The majority of the state-of-the-art approaches build upon 3D Morphable Modelling (3DMM), which has been proven to be more robust than model-free approaches such as Shape from Shading (SfS) or Structure from Motion (SfM). While offering visually plausible shape reconstruction results that resemble real faces, 3DMMs adhere to the model space learned from exemplar faces during the training phase, often yielding facial reconstructions that are excessively smooth and look too similar even across captured faces with completely different facial characteristics. This is due to the fact that 3DMMs are typically used as hard constraints on the reconstructed 3D shape. To overcome these limitations, in this paper we propose to combine 3DMMs with Dense Nonrigid Structure from Motion (DNSM), which is much less robust but has the potential of reconstructing fine details and capturing the subject-specific facial characteristics of every input. We effectively combine the best of both worlds by introducing a novel dense variational framework, which we solve efficiently by designing a convex optimisation strategy. In contrast to previous methods, we incorporate 3DMM as a soft constraint, penalizing both departure of reconstructed faces from the 3DMM subspace and variation of the identity component of the 3DMM over different frames of the input video. As demonstrated in qualitative and quantitative experiments, our method is robust, accurately estimates the 3D facial shape over time and outperforms other state-of-the-art methods of 4D face reconstruction
    corecore