97,972 research outputs found

    On the Number of Iterations for Dantzig-Wolfe Optimization and Packing-Covering Approximation Algorithms

    Get PDF
    We give a lower bound on the iteration complexity of a natural class of Lagrangean-relaxation algorithms for approximately solving packing/covering linear programs. We show that, given an input with mm random 0/1-constraints on nn variables, with high probability, any such algorithm requires Ω(ρlog(m)/ϵ2)\Omega(\rho \log(m)/\epsilon^2) iterations to compute a (1+ϵ)(1+\epsilon)-approximate solution, where ρ\rho is the width of the input. The bound is tight for a range of the parameters (m,n,ρ,ϵ)(m,n,\rho,\epsilon). The algorithms in the class include Dantzig-Wolfe decomposition, Benders' decomposition, Lagrangean relaxation as developed by Held and Karp [1971] for lower-bounding TSP, and many others (e.g. by Plotkin, Shmoys, and Tardos [1988] and Grigoriadis and Khachiyan [1996]). To prove the bound, we use a discrepancy argument to show an analogous lower bound on the support size of (1+ϵ)(1+\epsilon)-approximate mixed strategies for random two-player zero-sum 0/1-matrix games

    Reduced magnetohydrodynamic theory of oblique plasmoid instabilities

    Full text link
    The three-dimensional nature of plasmoid instabilities is studied using the reduced magnetohydrodynamic equations. For a Harris equilibrium with guide field, represented by \vc{B}_o = B_{po} \tanh (x/\lambda) \hat{y} + B_{zo} \hat{z}, a spectrum of modes are unstable at multiple resonant surfaces in the current sheet, rather than just the null surface of the polodial field Byo(x)=Bpotanh(x/λ)B_{yo} (x) = B_{po} \tanh (x/\lambda), which is the only resonant surface in 2D or in the absence of a guide field. Here BpoB_{po} is the asymptotic value of the equilibrium poloidal field, BzoB_{zo} is the constant equilibrium guide field, and λ\lambda is the current sheet width. Plasmoids on each resonant surface have a unique angle of obliquity θarctan(kz/ky)\theta \equiv \arctan(k_z/k_y). The resonant surface location for angle θ\theta is x_s = - \lambda \arctanh (\tan \theta B_{zo}/B_{po}), and the existence of a resonant surface requires θ<arctan(Bpo/Bzo)|\theta| < \arctan (B_{po} / B_{zo}). The most unstable angle is oblique, i.e. θ0\theta \neq 0 and xs0x_s \neq 0, in the constant-ψ\psi regime, but parallel, i.e. θ=0\theta = 0 and xs=0x_s = 0, in the nonconstant-ψ\psi regime. For a fixed angle of obliquity, the most unstable wavenumber lies at the intersection of the constant-ψ\psi and nonconstant-ψ\psi regimes. The growth rate of this mode is γmax/ΓoSL1/4(1μ4)1/2\gamma_{\textrm{max}}/\Gamma_o \simeq S_L^{1/4} (1-\mu^4)^{1/2}, in which Γo=VA/L\Gamma_o = V_A/L, VAV_A is the Alfv\'{e}n speed, LL is the current sheet length, and SLS_L is the Lundquist number. The number of plasmoids scales as NSL3/8(1μ2)1/4(1+μ2)3/4N \sim S_L^{3/8} (1-\mu^2)^{-1/4} (1 + \mu^2)^{3/4}.Comment: 9 pages, 8 figures, to be published in Physics of Plasma

    DDπD^*D\pi and BBπB^*B\pi couplings in QCD

    Get PDF
    We calculate the DDπD^*D\pi and BBπB^*B\pi couplings using QCD sum rules on the light-cone. In this approach, the large-distance dynamics is incorporated in a set of pion wave functions. We take into account two-particle and three-particle wave functions of twist 2, 3 and 4. The resulting values of the coupling constants are gDDπ=12.5±1g_{D^*D\pi}= 12.5\pm 1 and gBBπ=29±3g_{B^*B\pi}= 29\pm 3 . From this we predict the partial width \Gamma (D^{*+} \ra D^0 \pi^+ )=32 \pm 5~ keV . We also discuss the soft-pion limit of the sum rules which is equivalent to the external axial field approach employed in earlier calculations. Furthermore, using gBBπg_{B^*B\pi} and gDDπg_{D^*D\pi} the pole dominance model for the B \ra \pi and D\ra \pi semileptonic form factors is compared with the direct calculation of these form factors in the same framework of light-cone sum rules.Comment: 27 pages (LATEX) +3 figures enclosed as .uu file MPI-PhT/94-62 , CEBAF-TH-94-22, LMU 15/9
    corecore