656 research outputs found

    Scene-based imperceptible-visible watermarking for HDR video content

    Get PDF
    This paper presents the High Dynamic Range - Imperceptible Visible Watermarking for HDR video content (HDR-IVW-V) based on scene detection for robust copyright protection of HDR videos using a visually imperceptible watermarking methodology. HDR-IVW-V employs scene detection to reduce both computational complexity and undesired visual attention to watermarked regions. Visual imperceptibility is achieved by finding the region of a frame with the highest hiding capacities on which the Human Visual System (HVS) cannot recognize the embedded watermark. The embedded watermark remains visually imperceptible as long as the normal color calibration parameters are held. HDR-IVW-V is evaluated on PQ-encoded HDR video content successfully attaining visual imperceptibility, robustness to tone mapping operations and image quality preservation

    Information embedding and retrieval in 3D printed objects

    Get PDF
    Deep learning and convolutional neural networks have become the main tools of computer vision. These techniques are good at using supervised learning to learn complex representations from data. In particular, under limited settings, the image recognition model now performs better than the human baseline. However, computer vision science aims to build machines that can see. It requires the model to be able to extract more valuable information from images and videos than recognition. Generally, it is much more challenging to apply these deep learning models from recognition to other problems in computer vision. This thesis presents end-to-end deep learning architectures for a new computer vision field: watermark retrieval from 3D printed objects. As it is a new area, there is no state-of-the-art on many challenging benchmarks. Hence, we first define the problems and introduce the traditional approach, Local Binary Pattern method, to set our baseline for further study. Our neural networks seem useful but straightfor- ward, which outperform traditional approaches. What is more, these networks have good generalization. However, because our research field is new, the problems we face are not only various unpredictable parameters but also limited and low-quality training data. To address this, we make two observations: (i) we do not need to learn everything from scratch, we know a lot about the image segmentation area, and (ii) we cannot know everything from data, our models should be aware what key features they should learn. This thesis explores these ideas and even explore more. We show how to use end-to-end deep learning models to learn to retrieve watermark bumps and tackle covariates from a few training images data. Secondly, we introduce ideas from synthetic image data and domain randomization to augment training data and understand various covariates that may affect retrieve real-world 3D watermark bumps. We also show how the illumination in synthetic images data to effect and even improve retrieval accuracy for real-world recognization applications

    Data Hiding with Deep Learning: A Survey Unifying Digital Watermarking and Steganography

    Full text link
    Data hiding is the process of embedding information into a noise-tolerant signal such as a piece of audio, video, or image. Digital watermarking is a form of data hiding where identifying data is robustly embedded so that it can resist tampering and be used to identify the original owners of the media. Steganography, another form of data hiding, embeds data for the purpose of secure and secret communication. This survey summarises recent developments in deep learning techniques for data hiding for the purposes of watermarking and steganography, categorising them based on model architectures and noise injection methods. The objective functions, evaluation metrics, and datasets used for training these data hiding models are comprehensively summarised. Finally, we propose and discuss possible future directions for research into deep data hiding techniques

    Copyright Protection of 3D Digitized Artistic Sculptures by Adding Unique Local Inconspicuous Errors by Sculptors

    Get PDF
    In recent years, digitization of cultural heritage objects, for the purpose of creating virtual museums, is becoming increasingly popular. Moreover, cultural institutions use modern digitization methods to create three-dimensional (3D) models of objects of historical significance to form digital libraries and archives. This research aims to suggest a method for protecting these 3D models from abuse while making them available on the Internet. The proposed method was applied to a sculpture, an object of cultural heritage. It is based on the digitization of the sculpture altered by adding local clay details proposed by the sculptor and on sharing on the Internet a 3D model obtained by digitizing the sculpture with a built-in error. The clay details embedded in the sculpture are asymmetrical and discreet to be unnoticeable to an average observer. The original sculpture was also digitized and its 3D model created. The obtained 3D models were compared and the geometry deviation was measured to determine that the embedded error was invisible to an average observer and that the watermark can be extracted. The proposed method simultaneously protects the digitized image of the artwork while preserving its visual experience. Other methods cannot guarantee this

    Copyright Protection of 3D Digitized Artistic Sculptures by Adding Unique Local Inconspicuous Errors by Sculptors

    Get PDF
    In recent years, digitization of cultural heritage objects, for the purpose of creating virtual museums, is becoming increasingly popular. Moreover, cultural institutions use modern digitization methods to create three-dimensional (3D) models of objects of historical significance to form digital libraries and archives. This research aims to suggest a method for protecting these 3D models from abuse while making them available on the Internet. The proposed method was applied to a sculpture, an object of cultural heritage. It is based on the digitization of the sculpture altered by adding local clay details proposed by the sculptor and on sharing on the Internet a 3D model obtained by digitizing the sculpture with a built-in error. The clay details embedded in the sculpture are asymmetrical and discreet to be unnoticeable to an average observer. The original sculpture was also digitized and its 3D model created. The obtained 3D models were compared and the geometry deviation was measured to determine that the embedded error was invisible to an average observer and that the watermark can be extracted. The proposed method simultaneously protects the digitized image of the artwork while preserving its visual experience. Other methods cannot guarantee this
    • …
    corecore