4 research outputs found

    Mathematical models for perceived roughness of three-dimensional surface textures

    Get PDF
    This thesis reports and discusses results from a new methodology for investigating the visually perceived properties of surfaces; by doing so, it also discovers a measurement or estimator for perceived roughness of 1/Fβ noise surfaces. Advanced computer graphics were used to model natural looking surfaces (1/Fβ noise surfaces). These were generated and animated in real-time to enable observers to manipulate dynamically the parameters of the rendered surfaces. A method of adjustment was then employed to investigate the effects of changing the parameters on perceived roughness. From psychophysical experiments, it was found that the two most important parameters related to perceived roughness were the magnitude roll-off factor (β) and RMS height (σ) for this kind of surfaces. From the results of various extra experiments, an estimation method for perceived roughness was developed; this was inspired by common frequency-channel models. The final optimized model or estimator for perceived roughness in 1/Fβ noise surfaces found was based on a FRF model. In this estimator, the first filter has a shape similar to a gaussian function and the RF part is a simple variance estimator. By comparing the results of the estimator with the observed data, it is possible to conclude that the estimator accurately represents perceived roughness for 1/Fβ noise surfaces

    Acquisition and modeling of material appearance

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 131-143).In computer graphics, the realistic rendering of synthetic scenes requires a precise description of surface geometry, lighting, and material appearance. While 3D geometry scanning and modeling have advanced significantly in recent years, measurement and modeling of accurate material appearance have remained critical challenges. Analytical models are the main tools to describe material appearance in most current applications. They provide compact and smooth approximations to real materials but lack the expressiveness to represent complex materials. Data-driven approaches based on exhaustive measurements are fully general but the measurement process is difficult and the storage requirement is very high. In this thesis, we propose the use of hybrid representations that are more compact and easier to acquire than exhaustive measurement, while preserving much generality of a data-driven approach. To represent complex bidirectional reflectance distribution functions (BRDFs), we present a new method to estimate a general microfacet distribution from measured data. We show that this representation is able to reproduce complex materials that are impossible to model with purely analytical models.(cont.) We also propose a new method that significantly reduces measurement cost and time of the bidirectional texture function (BTF) through a statistical characterization of texture appearance. Our reconstruction method combines naturally aligned images and alignment-insensitive statistics to produce visually plausible results. We demonstrate our acquisition system which is able to capture intricate materials like fabrics in less than ten minutes with commodity equipments. In addition, we present a method to facilitate effective user design in the space of material appearance. We introduce a metric in the space of reflectance which corresponds roughly to perceptual measures. The main idea of our approach is to evaluate reflectance differences in terms of their induced rendered images, instead of the reflectance function itself defined in the angular domains. With rendered images, we show that even a simple computational metric can provide good perceptual spacing and enable intuitive navigation of the reflectance space.by Wai Kit Addy Ngan.Ph.D

    The role of chromatic texture and 3D shape in colour discrimination, memory colour, and colour constancy of natural objects

    Get PDF
    The primary goal of this work was to investigate colour perception in a natural environment and to contribute to the understanding of how cues to familiar object identity influence colour appearance. A large number of studies on colour appearance employ 2D uniformly coloured patches, discarding perceptual cues such as binocular disparity, 3D luminance shading, mutual reflection, and glossy highlights are integral part of a natural scene. Moreover, natural objects possess specific cues that help our recognition (shape, surface texture or colour distribution). The aim of the first main experiment presented in this thesis was to understand the effect of shape on (1) memory colour under constant and varying illumination and on (2) colour constancy for uniformly coloured stimuli. The results demonstrated the existence of a range of memory colours associated with a familiar object, the size of which was strongly object-shape-dependent. For all objects, memory retrieval was significantly faster for object-diagnostic shape relative to generic shapes. Based on two successive controls, the author suggests that shape cues to the object identity affect the range of memory colour proportionally to the original object chromatic distribution. The second experiment examined the subject’s accuracy and precision in adjusting a stimulus colour to its typical appearance. Independently on the illuminant, results showed that memory colour accuracy and precision were enhanced by the presence of chromatic textures, diagnostic shapes, or 3D configurations with a strong interaction between diagnosticity and dimensionality of the shape. Hence, more cues to the object identity and more natural stimuli facilitate the observers in accessing their colour information from memory. A direct relationship was demonstrated between chromatic surface representation, object’s physical properties, and identificability and dimensionality of shape on memory colour accuracy, suggesting high-level mechanisms. Chromatic textures facilitated colour constancy. The third and fourth experiments tested the subject’s ability to discriminate between two chromatic stimuli in a simultaneous and successive 2AFC task, respectively. Simultaneous discrimination threshold performances for polychromatic surfaces were only due to low-level mechanism of the stimulus, whereas in the successive discrimination, i.e. when memory is involved, high-level mechanisms were established. The effect of shape was strongly task- dependent and was modulate by the object memory colour. These findings together with the strong interaction between chromatic cues and shape cues to the object identity lead to the conclusion that high level mechanisms linked to object recognition facilitated both tasks. Hence, the current thesis presents new findings on memory colour and colour constancy presented in a natural context and demonstrates the effect of high-level mechanisms in chromatic discrimination as a function of cues to the object identity such as shape and texture. This work contributes to a deeper understanding of colour perception and object recognition in the natural world.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore