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THE ABSTRACT 

 

 

This thesis reports and discusses results from a new methodology for investigating the 

visually perceived properties of surfaces; by doing so, it also discovers a measurement 

or estimator for perceived roughness of 1/Fβ noise surfaces.  

 

Advanced computer graphics were used to model natural looking surfaces (1/Fβ noise 

surfaces). These were generated and animated in real-time to enable observers to 

manipulate dynamically the parameters of the rendered surfaces. A method of 

adjustment was then employed to investigate the effects of changing the parameters on 

perceived roughness. From psychophysical experiments, it was found that the two most 

important parameters related to perceived roughness were the magnitude roll-off factor 

(β) and RMS height (σ) for this kind of surfaces. 

 

From the results of various extra experiments, an estimation method for perceived 

roughness was developed; this was inspired by common frequency-channel models. The 

final optimized model or estimator for perceived roughness in 1/Fβ noise surfaces found 

was based on a FRF model. In this estimator, the first filter has a shape similar to a 

gaussian function and the RF part is a simple variance estimator. By comparing the 

results of the estimator with the observed data, it is possible to conclude that the 

estimator accurately represents perceived roughness for 1/Fβ noise surfaces. 

 

 

 

 

 

  



  

 
iii 

 

DEDICATED TO 

 

 

 

 

 

 

 

 

 

 

 

 
 

M O M   A N D   D A D  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 
iv 

ACKNOWLEDGEMENTS 

 

 

I would especially like to thank both of my supervisor, Professor Mike Chantler and Dr. 

Patrick Green. Thanks Mike for all your support, ideas, discussions, time and for 

explaining me so patiently the hard topics. Thanks Patrick for all your ideas about 

experiments, checking this thesis and papers, support and for explaining me the world 

of psychophysics.  

 

Special thanks to Dr. Ondřej Drbohlav for double-checking my experimental data and 

explaining me some statistics and model fitting methods. 

 

I will also like to thank Andy Spence, Khemraj Emrith, Kevin McMahon and Jiři Filip 

for their help and lunchtime discussions. Also thanks to the members of the department 

for their help in small but essential problems and tasks. 

 

Finally, I will like to express my lasting gratitude to my mom, dad and my brother 

Martin for their everyday support and enthusiasm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



  

 
v 

 
 
 
 
 
 
 
 
 
 
                       
 
                       
 
                                                                                                                              



  

 
vi 

TABLE OF CONTENTS 

 

 

THE ABSTRACT ...................................................................................................................................... II 

DEDICATED TO .................................................................................................................................... III 

ACKNOWLEDGEMENTS ..................................................................................................................... IV 

TABLE OF CONTENTS ......................................................................................................................... VI 

LIST OF FIGURES ................................................................................................................................. IX 

LIST OF TABLES ................................................................................................................................ XIII 

LIST OF SYMBOLS, TERMS AND ABBREVIATIONS ................................................................. XIV 

CHAPTER 1 INTRODUCTION ............................................................................................................ 1 
1.1 Motivation and goals...................................................................................................................... 1 
1.2 Scope of the work .......................................................................................................................... 2 
1.3 Original contributions .................................................................................................................... 3 
1.4 Organization of this thesis ............................................................................................................. 3 

CHAPTER 2 ROUGHNESS AND SURFACES ................................................................................... 5 
2.1 The dimensions of natural textured surfaces .................................................................................. 5 
2.2 Physical measurements of roughness ............................................................................................. 8 
2.3 Related studies in the perception of roughness ............................................................................ 12 
2.4 Summary and Discussion ............................................................................................................. 15 

CHAPTER 3 A GENERAL METHODOLOGY ................................................................................ 17 
3.1 Illuminant and viewpoint position ............................................................................................... 17 
3.2 Natural synthetic stimuli .............................................................................................................. 20 
3.3 Comparing psychophysical methods ........................................................................................... 23 
3.4 Summary and Discussion ............................................................................................................. 25 

CHAPTER 4 MODELLING THE STIMULI ..................................................................................... 26 
4.1 1/Fβ noise surfaces ....................................................................................................................... 26 
4.2 Construction of the stimuli ........................................................................................................... 29 
4.2.1 Light and reflectance.................................................................................................................... 30 
4.2.2 Geometry, occlusions, silhouette and edges ................................................................................ 32 



  

 
vii 

4.2.3 Cast shadows................................................................................................................................ 36 
4.2.4 Stimuli stand ................................................................................................................................ 39 
4.3 Animating the stimuli .................................................................................................................. 40 
4.4 Summary and Discussion ............................................................................................................. 43 

CHAPTER 5 EXPERIMENTAL SETUP ........................................................................................... 45 
5.1 Constrain environment ................................................................................................................. 45 
5.2 Tools ............................................................................................................................................ 47 
5.2.1 Displays ....................................................................................................................................... 47 
5.2.2 Software ....................................................................................................................................... 49 
5.2.3 Hardware ...................................................................................................................................... 50 
5.3 LCD Monitor calibration ............................................................................................................. 50 
5.4 Summary and Discussion ............................................................................................................. 53 

CHAPTER 6 ROUGHNESS IN 1/FΒ SURFACES ............................................................................. 54 
6.1 The effect of varying RMS roughness (σ) on perceived roughness ............................................. 54 
6.2 The effect of varying magnitude roll-off factor (β) on perceived roughness ............................... 57 
6.3 The effect of random phase on perceived roughness ................................................................... 58 
6.4 Contours of constant perceived roughness in (β, σ) space ........................................................... 61 
6.5 Summary and Discussion ............................................................................................................. 66 

CHAPTER 7 A MODEL BASED ON THE HUMAN VISION ......................................................... 67 
7.1 A plausible measurement model .................................................................................................. 67 
7.2 Optimization of F1 ....................................................................................................................... 70 
7.3 Fitting the models to the data ....................................................................................................... 71 
7.3.1 The box filter ............................................................................................................................... 71 
7.3.2 The power function filter ............................................................................................................. 73 
7.4 A filter based on the human vision system .................................................................................. 76 
7.5 Summary and Discussion ............................................................................................................. 80 

CHAPTER 8 TESTING THE MODELS USING NARROW-BAND SPECTRA SURFACES ..... 83 
8.1 New stimuli based on spatial frequency channels ........................................................................ 83 
8.2 Relationship between frequencies and perceived roughness ....................................................... 87 
8.2.1 Exploring mid-range frequencies ................................................................................................. 87 
8.2.2 Exploring high-range frequencies ................................................................................................ 90 
8.3 Modelling perceived roughness including the frequency bands experiments. ............................. 93 
8.3.1 Roughness estimator using a gaussian function for F1 ................................................................. 93 
8.3.2 Roughness estimator using a power function for F1 .................................................................. 100 
8.4 Improving further the model ...................................................................................................... 106 
8.5 Summary and Discussion ........................................................................................................... 111 

CHAPTER 9 SCALING THE PROPOSED MODEL ...................................................................... 113 



  

 
viii 

9.1 Perceptual scaling in between iso-roughness lines .................................................................... 113 
9.2 The mid-point experiment .......................................................................................................... 115 
9.3 Adding units to the model .......................................................................................................... 118 
9.4 The optimal model for perceived roughness of 1/Fβ surfaces .................................................... 121 
9.5 Summary and Discussion ........................................................................................................... 122 

CHAPTER 10 SUMMARY AND CONCLUSIONS ........................................................................... 124 
10.1 Summary .................................................................................................................................... 124 
10.2 Discussion and future work ....................................................................................................... 127 
10.3 Final conclusions ....................................................................................................................... 128 

THE APPENDICES ............................................................................................................................... 129 

THE BIBLIOGRAPHY ......................................................................................................................... 167 

  



  

 
ix 

 

LIST OF FIGURES 

 
 
Figure 1-1: Photograph of a real texture on the left and on the right its shape. Please notice that one can 

perceive various characteristics from these samples. ......................................................................... 2 
Figure 2-1: Three different surface profiles with the same Ra value. ......................................................... 10 
Figure 3-1: The effect of varying illumination conditions on the same surface is shown above. The light is 

position on top in the first surface, in the middle for the second surface and on the right for the last 

surface. ............................................................................................................................................. 18 
Figure 3-2: Illustration of the bas-relief ambiguity with two cylinders of equal height viewed from above. 

Because the elevation of the light source is lower for the cylinder on the left, it appears to be taller 

than the cylinder on the right. ........................................................................................................... 19 
Figure 3-3: illustration of three textures using dots, lines and Ls, Ts and Xs. ........................................... 21 
Figure 3-4: Example of two simple synthetic images constructed with gaussians. .................................... 22 
Figure 3-5: On the left a wireframe illustration of a 1/Fβ noise surface whilst on the right a different 

surface fully rendered. ...................................................................................................................... 23 
Figure 4-1: Graphical demonstration of H(f) in the frequency domain, left for 1D whilst right for 2D (β = 

2.0). ................................................................................................................................................... 27 
Figure 4-2: two surfaces with different random phase values θ. ............................................................... 27 
Figure 4-3: The top row represents the effects of varying σ, whilst the bottom row illustrates the effect of 

changing β. ....................................................................................................................................... 28 
Figure 4-4: On the left a simple height map whilst on the right the three-dimensional surface. ............... 29 
Figure 4-5: A sample surfaces in fronto-planar view using per-pixel illumination illustrated with three 

different illuminant positions. ........................................................................................................... 31 
Figure 4-6: Example of a surface rendered in three different viewpoints with reflectance only. This 

surface lack silhouettes and occlusions when not taking into account structure or geometry. ........ 32 
Figure 4-7: Parallax mapping example. Note the lack of edges, artefacts at the bottom and lack of cast 

shadows. ........................................................................................................................................... 33 
Figure 4-8: Relief mapping example, note the cast shadows and improvement in artefacts but lack of edge 

or silhouettes. ................................................................................................................................... 34 
Figure 4-9: Mesh on the left is loaded into video memory then is per-vertex displaced by a height map in 

real-time. .......................................................................................................................................... 36 
Figure 4-10: Example of a simple polygon displacement, on the left a normally displaced polygon. Note 

how these appear very smooth. On the right, the correct shape of the sample. ................................ 36 
Figure 4-11: illustration of the shadow mapping method. ......................................................................... 38 
Figure 4-12: On the left the stand shape as a height map and on the right the final rendering of the 

stimuli. .............................................................................................................................................. 39 
Figure 4-13: Illustration of an arcball interface. ....................................................................................... 40 



  

 
x 

Figure 4-14: The angle between the surface normal and the light position and the percentage of time each 

observer spent comparing the two surfaces. ..................................................................................... 41 
Figure 4-15: The average of the preferred view for all the seven observers and a fitting gaussian function 

to the average of these results. ......................................................................................................... 42 
Figure 4-16: Movement path of the animation for later experiments. ....................................................... 43 
Figure 4-17: Rotation of the surface normal as seen from the light position. ........................................... 43 
Figure 5-1: Illustration of the experimental setup. .................................................................................... 46 
Figure 5-2: On the left, an un-calibrated linear gamma and on the right a calibrated one. ..................... 51 
Figure 5-3: Luminance across the screen from an un-calibrated display. ................................................ 52 
Figure 6-1: Demonstrates three surfaces with similar β {1.8} and θ {23} but different σ {0.6, 1.0 and 1.2}.

 .......................................................................................................................................................... 55 
Figure 6-2: Perceived roughness increases with σ. ................................................................................... 56 
Figure 6-3: Demonstrates three surfaces with similar σ {1.2} and θ {23} but different β {1.8, 2.0 and 2.2}.

 .......................................................................................................................................................... 57 
Figure 6-4: Perceived roughness decreases with magnitude roll-off factor (β). ....................................... 58 
Figure 6-5: Demonstrating four surface the same σ {1.0 cm} and β {2.0} values but different random 

phase seed {5, 25, 42 and 62}. .......................................................................................................... 58 
Figure 6-6: Demonstration of the pair sets for the phase relationship experiment. .................................. 59 
Figure 6-7: Values of RMS roughness of adjustable surfaces set by individual observers when matching 

five different fixed surface RMS roughnesses (horizontal axis) and with five different combinations 

of random phase (symbols shown in key). ........................................................................................ 60 
Figure 6-8: Demonstration of the method used to obtain the contour lines. .............................................. 62 
Figure 6-9: Errors from the pilot experiment to test the limits of the actual experiment. .......................... 63 
Figure 6-10: Individual results for surface matches in (β-σ) space. .......................................................... 63 
Figure 6-11: Roughness contour lines for the (β, σ) space. Error bars are standard errors of the mean 

RMS roughness values set over all trials at each combination of values. ........................................ 64 
Figure 6-12: Roughness contour lines in (β, log σ) space. ........................................................................ 65 
Figure 6-13: Slopes of the iso-roughness lines obtained from individual observers. ................................ 65 
Figure 7-1: The FRF (filter-rectify-filter) framework. ............................................................................... 68 
Figure 7-2:  Effects of varying the parameters Fp and Fc of the box filter ................................................. 72 
Figure 7-3: Objective function εt as a function of the box filter parameters, dashed lines indicate where 

the parameters fp and fp intersect or are too small to form a band pass filter (< 1 cycle/degree). ... 72 
Figure 7-4: Iso-roughness lines predicted by the optimised box filter model, compared to the 

experimental data. ............................................................................................................................ 73 
Figure 7-5: Effects of varying the parameters p and Fc of the power function filter. ................................. 74 
Figure 7-6: Objective function εt as a function of the power filter parameters. ......................................... 74 
Figure 7-7: Iso-roughness lines predicted by the optimised power function filter, compared to the 

experimental data. ............................................................................................................................ 75 
Figure 7-8: Plots of all filter functions when optimizing the error. ........................................................... 76 
Figure 7-9: Spatial frequency channels approximations re-plotted from Wilson’s data (Wilson, 

McFarlane, & Phillips, 1983) as gaussian functions to make them more parsimonious. ................ 77 
Figure 7-10: Effects of varying the parameters μ and σg of the Gaussian filter. ....................................... 78 



  

 
xi 

Figure 7-11: Objective function εt as a function of the Gaussian filter parameters. ................................. 78 
Figure 7-12: Iso-roughness lines predicted by the optimised gaussian filter model, compared to the 

experimental data. ............................................................................................................................ 79 
Figure 7-13: Final Gaussian Fit. ............................................................................................................... 80 
Figure 8-1: Frequency bands used to construct the new stimuli. ............................................................... 85 
Figure 8-2: Demonstration of the band stimuli with and without the base (one to two cycles per stimuli 

width). ............................................................................................................................................... 86 
Figure 8-3: Demonstration of each gaussian frequency band independently (from left to right: Fb1 = 1.0, 

Fb2 = 0.25 and Fb3 = 0.125). ............................................................................................................ 87 
Figure 8-4: Individual data for the experiment on mid-range frequencies. ............................................... 89 
Figure 8-5: Median observations and iso-roughness lines in the space [Fb1, Fb2]. ................................... 89 
Figure 8-6: Individual data for the experiment on high-range frequencies. .............................................. 91 
Figure 8-7: Median observations and iso-roughness lines in the space [Fb2, Fb3]. ................................... 91 
Figure 8-8: Iso-roughness lines in decades from the experiment in section 8-2. ....................................... 92 
Figure 8-9: Iso-roughness contour lines for the experiment in section 8-3. .............................................. 93 
Figure 8-10: Optimization of the parameters of the gaussian function with the [Fb1, Fb2] bands. ............ 96 
Figure 8-11: Optimization of the parameters of the gaussian function with the [Fb2, Fb3] bands. ............ 96 
Figure 8-12: Optimized parameters with all the experiments in chapter eight using a gaussian function.97 
Figure 8-13: Demonstration of the optimized parameters for the gaussian function for each experiment 

and the total optimization by assigning equal weights to each experiment. ..................................... 98 
Figure 8-14: Fit of the model compared to the iso-roughness lines from chapter six when weighting each 

optimized parameter from the three experiments equally (unbroken lines are the model’s output). 99 
Figure 8-15: Fit of the model compared to the iso-roughness lines from [Fb1, Fb2] when weighting each 

optimized parameter from the three experiments equally (unbroken lines are the models output). . 99 
Figure 8-16: Fit of the model compared to the iso-roughness lines from [Fb2, Fb3] when weighting each 

optimize parameter from the three experiments equally (unbroken lines are the models output). . 100 
Figure 8-17: Optimization of the parameters of the power function for the [Fb1, Fb2] iso-roughness lines.

 ........................................................................................................................................................ 101 
Figure 8-18: Optimization of the parameters of the power function for the [Fb2, Fb3] iso-roughness lines.

 ........................................................................................................................................................ 102 
Figure 8-19: Optimization of the parameters of the power function for the combined experiments. ....... 102 
Figure 8-20: Demonstration of the optimized parameters for the power function for each experiment and 

the total optimization when assigning equal weights to each experiment. ..................................... 103 
Figure 8-21: Fit of the model compared to the iso-roughness lines from chapter six when weighting each 

optimized parameter from the three experiments equally. .............................................................. 104 
Figure 8-22: Fit of the model compared to the iso-roughness lines from [Fb1, Fb2] when weighting each 

optimized parameter from the three experiments equally. .............................................................. 104 
Figure 8-23: Fit of the model compared to the iso-roughness lines from [Fb2, Fb3] when weighting each 

optimized parameter from the three experiments equally. .............................................................. 105 
Figure 8-24: mc and cc parameters influencing the variable gaussian. ................................................... 107 
Figure 8-25: optimizing the Fp value for the variable gaussian. ............................................................. 107 



  

 
xii 

Figure 8-26: Optimization of the mc and cc parameters of the variable gaussian using all the three 

previous experiments. (Minima from left to right Opl, Op, Oph) ...................................................... 108 
Figure 8-27: Three optimizations for the variable gaussians were they were match by multiplying a factor 

to them. Please notice that the variable function can be multiplied by any factor, as a result the plot 

for the line can go even further than plotted here. ......................................................................... 109 
Figure 8-28: Iso-roughness lines from Chapter 6 compared to the predicted model using a variable 

gaussian with optimized parameters............................................................................................... 110 
Figure 8-29: Iso-roughness lines from [Fb1, Fb2] compared to the predicted model. .............................. 110 
Figure 8-30: Iso-roughness lines from [Fb2, Fb3] compared to the predicted model. .............................. 111 
Figure 9-1: Demonstration of the stimuli for the mid-point experiment, where the surfaces in the sides are 

the samples, whilst the middle surface is the adjustable one. ......................................................... 115 
Figure 9-2: Observation for each trial of the ten observers of the lower and middle iso-roughness 

reference. ........................................................................................................................................ 116 
Figure 9-3: Observation for each trial of the ten observers of the lower and top iso-roughness reference.

 ........................................................................................................................................................ 117 
Figure 9-4: Observation for each trial of the ten observers of the middle and top iso-roughness reference.

 ........................................................................................................................................................ 117 
Figure 9-5: Medians from the results in the mid-point experiment. ......................................................... 118 
Figure 9-6: Mapping the un-scaled estimator to the scaled one for just one pair of reference surfaces . 119 
Figure 9-7: Scaling the estimator with a polynomial function. ................................................................ 121 
Figure 9-8: Mapping perceived roughness in the [β, σ] space. ............................................................... 122 

  



  

 
xiii 

 

LIST OF TABLES 

 
 
Table 2-1: Example table of the many terms used to describe the perceptual dimensions of surface 

textures where similar terms where group by the author to demonstrate they interlay in their 

description. ......................................................................................................................................... 7 
Table 2-2: Summary of the amplitude parameters (peak and valley) as defined in the international 

standard EN ISO 4287:1998. ............................................................................................................. 9 
Table 2-3: Summary of the amplitude parameters (average of ordinates) as defined in the international 

standard EN ISO 4287:1998. ........................................................................................................... 10 
Table 2-4: Summary of the spacing parameters as defined in the international standard EN ISO 

4287:1998. ........................................................................................................................................ 11 
Table 2-5: Summary of the hybrid parameters as defined in the international standard EN ISO 

4287:1998. ........................................................................................................................................ 11 
Table 2-6: Summary of the curved and related parameters as defined in the international standard EN 

ISO 4287:1998. ................................................................................................................................. 11 
Table 5-1: Comparing CRTs and flat panels displays. .............................................................................. 48 
Table 5-2: Table of the NEC monitor specifications. ................................................................................. 49 
Table 5-3: A compilation of all the error when calibrating the gamma in percentage. ............................. 51 
Table 5-4: A compilation of all the error when calibrating the gamma in percentage. ............................. 52 
Table 7-1: Short summary of all the filters, the minimum error and the optimum parameter values. ....... 76 
Table 7-2: Summary of all the filter functions and their errors. ................................................................ 81 
Table 8-1: Parameters for each of the iso-roughness lines using every single experiment and all of them.

 ........................................................................................................................................................ 105 
Table 8-2: Optimized parameter values for the variable gaussian using the three experiments. ............ 108 

 
 
 
 
  



  

 
xiv 

 

LIST OF SYMBOLS, TERMS AND ABBREVIATIONS 

 
 

Symbols Description 
* Convolution operator 

a Squared parameter value from the polynomial function 

β Magnitude roll-off factor 

βref Magnitude roll-off factor for the reference surface 

βadj Magnitude roll-off factor for the adjustable surface 

b Parameter value from the polynomial function 

bc Equal to -mc 

c Intersection parameter value from the polynomial function 

cc Changes high-end of the variable gaussian 

ε Objective function or error measure 

εt Total error measurement 

ξpr Perceptual Roughness 

ξspr Scaled perceptual Roughness 

ff Cyclic frequency 

fp Start frequency 

fc Cut off frequency 

FRF Back pocket model 

F Filter from FRF model 

F1 First filter from the FRF model 

F2 Second filter from the FRF model 

f1(x, y) First filter of the FRF model in the spatial domain 

F1(u, v) First filter of the FRF model in the frequency domain 

Fb1 Magnitude of the first gaussian frequency band 

Fb2 Magnitude of the second gaussian frequency band 

Fb3 Magnitude of the third gaussian frequency band 

H Representation of the top surface (ξspr) 

h Representation of the top surface (ξpr) 

K Gain used in the box filter 

k Variable to normalize the gaussian function filter 

Kc Normalizing variable for variable gaussian filter 

L Representation of the bottom surface (ξspr) 

l Representation of the bottom surface (ξpr) 

mc Changes low-end of variable gaussian 

µ Mean value used in the gaussian function 

µσ Mean used for the RMS roughness calculations 



  

 
xv 

µb1 Mean used for the first gaussian frequency band 

µb2 Mean used for the second gaussian frequency band 

µb3 Mean used for the third gaussian frequency band 

P Representation of surface in the scaling 

p Weight power variable used in the power function filter 

R Rectifying stage from the FRF model 

Rp Maximum profile peak height 

Rv Maximum profile valley depth 

Rz Maximum height of profile 

Rc Mean height of profile elements 

Rt Total height of profile 

Ra Arithmetical mean deviation of the assessed profile 

Rq Root mean square deviation of the assessed profile 

Rsk Skewness of the assessed profile 

Rku Kurtosis of the assessed profile 

RSm Mean width of the profile elements 

RΔm Root mean square slope of the assessed profile 

Rmr(c) Material ratio of the profile 

Rdc Profile section height difference 

Rmr Relative material ratio 

σ RMS roughness or Rq 

σref RMS roughness for the reference surface 

σadj RMS roughness for the adjustable surface 

σg Standard deviation used in the gaussian function 

σb Standard deviation used in the gaussian frequency bands 

S(u, v) Surface height in the frequency domain 

s(x, y) Surface height in the spatial domain 

θ Random phase 

θref Random phase for the reference surface 

θadj Random phase for the adjustable surface 

θf Angle function 

W Waviness 

Z(x) Profile height 

  
 
 
 
 
 
 
 
 
 
 



  

 
xvi 

Terms Description 
1/Fβ noise surfaces Type of textured surface 

20/20 vision Visual acuity measurement 

Adjustable surface 
Variable surface used in the method of 

adjustment 

Back pocket model Landy’s reference to the FRF model 

Box filter Type of filter shape used as F1 

Brodatz 
Photographic album used for the study of 

textures 

Category scaling Psychophysical method 

Contours Lines with similar characteristics or values 

Fractals Different types of surfaces 

Frequency band surface model 
Type of textured surface, also known as 

narrow band spectra model 

Gaussian filter Type of filter shape used as F1 

Gaussian frequency bands Bands used for the new stimuli in chapter 8 

High-range frequencies Frequencies from 7.0 cpd to 30 cpd 

Iso-roughness lines 
Lines of perceived roughness with equal 

values 

Least square fitting Mathematical fitting method 

MATLAB Software tool 

Method of adjustment Psychophysical method 

Mid-range frequencies Frequencies from 0.8 cpd to 7.0 cpd 

Narrow band spectra model 
Type of textured surface, also known as 

frequency band surface model 

Perceived Roughness How surfaces would feel if touched 

Power filter Type of filter shape used as F1 

Random phase seed Seed is taken from MATLAB 

Reference surface 
Invariable surface used in the method of 

adjustment 

RMS Roughness Physical measurement Rq 

Surface Three dimensional 

Unitless Without a defined unit 

Variable gaussian filter Type of filter shape used as F1 

Waviness Characteristic of a surface 

 
 
 
 
 
 
 
 



  

 
xvii 

Abbreviations Description 
cpd Cycles per degree 

CRT Cathode ray tube screen 

CSF Contrast Sensitivity Function 

DFT Discreet Fourier transform 

HVS Human vision system 

ISO International organization for standardization 

LCD Liquid crystal display 

MDS Multidimensional scaling 

RMS Root mean square 

SA I Class of tactile receptor 

TFT 
Thin film transistor also known as TFT-LCD as this 

is also a type of LCD 

V1 Primary visual cortex 

Var Mathematical variance 

cpi Cycles per image width 

 
 
 
 
 
 
 
 

 



  

 
1 

CHAPTER 1  

INTRODUCTION 

 

 

This thesis is concerned with the measurement of the perceived roughness of one 

particular class of textured surfaces, those with a 1/Fβ noise surface height spectrum. In 

this chapter, the motivation and goals will be explained in section 1.1, the scope and 

limitations of the work will be described in section 1.2, followed by the main 

contributions in section 1.3, finishing with the organization of the thesis as a whole in 

section 1.4. 

  

1.1 Motivation and goals 

Surface characteristics like roughness, directionality, hardness, waviness, etc are readily 

used by humans in a daily basis. In certain circumstances, statistical measurements of 

physical descriptions of the surfaces are assumed to be equivalent to their perceived 

characteristics like for example perceived roughness and RMS roughness, but it is not 

known whether these measurements actually match how humans perceive surfaces, they 

can make mathematical sense and yet be illogical in nature to humans. For that reason, 

the motivation of this work is to find a measurement based on the human visual system 

that will be more in-tune with the perception of surface characteristics by humans. 

 

The first main goal of this thesis is to find a surface characteristic to analyse, as one can 

enumerate hundreds or even thousands of characteristics (as for example looking at the 

surfaces in Figure 1-1), and researching all of them would be an impossible task for the 

author alone. The second goal is to find a general methodology for measuring the 

perception of surface characteristics, with this methodology it will be possible to realize 

my main goal of discovering the perceived measurement for the chosen characteristic, 

and to further research in the area of perception generally. 
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Once the surface characteristic is chosen, it would be possible, with further research, to 

apply this measurement in many other research areas where material characteristics are 

important (see Adelson (2001)) such as: 

• quality control, 

• ‘human like’ sample retrieval, 

• perceptual scaling or morphing, 

• visualizations, 

• product evaluation, 

• and product development. 

 

     

 
Figure 1-1: Photograph of a real texture on the left and on the right its shape. Please notice that one can 

perceive various characteristics from these samples. 

 

1.2 Scope of the work 

As previously discussed, it would be impossible to research every single surface 

characteristic. Therefore, this thesis will only investigate for the visual perception of 

roughness in surfaces; the argument for choosing this surface characteristic is located in 

Chapter 2. Furthermore, because of the wide variety of textured surfaces, the results 

will only represent synthetic surfaces that are isotropic in nature, in particular 1/Fβ noise 

surfaces. 

 

In addition, the stimuli will be free of distractions, colour or any other influencing 

parameters that can change the surfaces’ perceived roughness; none of these extra 

parameters will be explored in this thesis. The stimuli will also be free of 
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microstructure, to avoid problems with the light model as described in Chapter 4. Other 

smaller limitations and assumptions will be discussed in each of the chapters as they 

appear. 

 

1.3 Original contributions 

This thesis contains four main contributions to the field of visual perception of surfaces: 

1. As described in Chapters 4 and 5, a new way of presenting the stimuli not by 

just using images but by constructing complex real-time morphable three-

dimensional surfaces using advanced computer graphics was developed. These 

were animated so as to simulate inspection of a real surface by turning it under a 

light source, so enhancing the depth information available to observers from 

transformations in the pattern of shading in the rendered image. 

 

2. A perceptual space to describe perceived roughness in terms of two parameters 

of 1/Fβ noise surfaces was discovered in Chapter 6; this space is very important 

as it can be used to further the research on the perception of these surfaces. 

 

3. The main contribution of this thesis is the model for perceived roughness in 1/Fβ 

noise surfaces based on the human visual system as described in Chapters 7, 8 

and 9. 

 

4. The methodology used for deriving this model of perceived roughness, which 

can be used again for further perceived characteristics. 

 

The combined result of all these contributions makes it possible to develop the 

methodology and the measurement for visual perceived roughness of 1/Fβ noise 

surfaces.  

  

1.4 Organization of this thesis 

This thesis is subdivided in two main groups of chapters. The first group compromises 

Chapters 2 to 5, and discusses the reasons why roughness was chosen as the research 

characteristic, why the model for the stimuli was chosen, how it was constructed and 
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finally the general methodology used. The second part of the thesis, Chapters 6 to 10, 

describes the development of the model for perceived roughness, and the parameters of 

the model. 

 
Hence, Chapter 2 provides a short summary of the dimensions of textures and the 

reasoning for choosing roughness as the surface characteristic for analysis. It also 

provides a short summary of the current physical and perceptual measurements in the 

literature. Chapter 3 discusses the selection of 1/Fβ noise surfaces as the stimuli, the 

implications of factors like viewpoint, light, and finishes with a summary of common 

psychophysical methods for the study of perception. 

 

Having decided on the stimuli, then Chapter 4 describes the construction of the stimuli 

and the method of presenting them to the observers. This chapter also describes the 

general animation (motion) and viewpoint of the stimuli; also, it describes how this 

motion was obtained. Chapter 5 explains how the experiments were setup and it also 

explains the tools used to realize them. 

 

After describing the general methodology and stimuli, Chapter 6 uses them to discover 

how the parameters of the stimuli relate to perceived roughness; Chapter 7 proposes 

models and estimators to account for the observations whilst Chapter 8 introduces a 

new type of test surface for use in experiments to disambiguate the best fitting model. 

The final model is scaled in Chapter 9, followed by the conclusions of the thesis as a 

whole in Chapter 10. 
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CHAPTER 2  

ROUGHNESS AND SURFACES 

 

 

Textured surfaces have many characteristics that are used by humans to judge objects. 

For example, one might use the surface texture of a fruit to help decide whether it 

belongs to a familiar edible category or not. In everyday language, humans express 

judgements of textured surfaces in terms of many properties such as fineness, regularity, 

roughness, coarseness, etc. However, it is unknown if perceived properties can be 

associated with physical properties of surfaces or if they can be modelled based on 

knowledge of the human visual system.   

 

This chapter is subdivided into five sections. Section 2.1 describes why roughness was 

chosen as the perceptual characteristic to be analysed, followed by Section 2.2 

enumerating physical measurements for roughness. Section 2.3 describes literature 

about perceived roughness in touch, vision and related studies. This chapter will finish 

with a short discussion of chapter as a whole and the main conclusions from it in 

Section 2.4. 

  

2.1 The dimensions of natural textured surfaces 

The objective of this section is to find a common and starting perceptual property to 

study. Therefore, the first step was to find about perceptual properties and textured 

surfaces, either in two-dimensional images or in three-dimensional samples.  

 

Many methods have been used to determine the mapping between physical and 

perceived properties of surfaces textures. Tamura, Mori and Yamawaka’s (1978) 

psychophysical study of textures is the first one that tried to determine this mapping. In 

order to identify features of textures that approximate to human visual perception, they 

asked 48 human observers to judge the similarities of texture pairs from 16 pictures 

(images) from the Brodatz album (1966). Tamura et al used six features: coarseness, 

contrast, directionality, line/blob likeness, regularity and roughness; unfortunately, 
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these features were chosen without any previous psychophysical experimentation. As a 

result, all these characteristics can be researched. However, they did not specify a 

common main characteristic as none is more heavily weighted than the other one. The 

main contribution from Tamura et al was that they helped start the research into surface 

texture dimensions. 

  

Adamasun and King (1989) also conducted experiments similar to Tamura and 

measured similarity judgements according to five visual properties of two-dimensional 

textures: coarseness, contrast, busyness, complexity and strength of texture. They 

devised computational approximations for each of these properties and claimed that 

there is a high correspondence between their computational measurements and the 

human rankings of 88 subjects using the same property. 

 

Although these authors found correlations between machine and human rankings, they 

used descriptive terms that are not always spontaneously used by humans. As a result, 

the observers might have been implicitly prompted to look for texture properties 

corresponding to those that the algorithms were designed to measure.  

 

Rao and Lohse (1993a) (1993b) (1996) overcame this problem by using free sorting 

tasks. They asked 20 subjects to sort 56 Brodatz textures into as many groups as the 

subjects wished such that the textures in each group were perceptually similar. A 

multidimensional scaling (MDS) method was later used to derive a perceptual space; in 

their findings, they correlated a three-dimensional space to the visual properties of 

repetitiveness, orientation and complexity. 

 

Long and Leow (2001) used a free sorting task to discover the perceptual space. In their 

experiment, 60 subjects and 50 Brodatz textures were used. They concluded that there is 

a four-dimensional space but they did not assign names to this, but instead linked the 

model into a computational space and later into other models like neural networks 

(Long and Leow, 2002).  

 

Many other experiments have attempted to discover a standard set of predefined 

dimensions for textured surfaces (Harvey and Gervais, 1981) (Copeland and Trivedi, 

1996) (Vanrell and Vitria, 1997) (Payne, Hepplewhite and Stonham, 1999) (Wu, 
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Manjunanth, Newsam and Shin, 1999) (Payne, Hepplewhite and Stonham, 2000) ( 

Abbadeni, Ziou and Wang, 2000a) (Abbadeni, Ziou and Wang, 2000b) (Gurnsey and 

Fleet, 2001) (Payne and Stonham, 2001) (Bittiato, Gallo and Nicotra, 2003) (Fujii, Suji 

and Ando, 2003) (Ontrup, Ritter and Werseing, 2004) (Geusebroek and Smeulders, 

2005). However, there are differences between the studies in the number and nature of 

the dimensions obtained, suggesting that MDS methods do not identify stable perceived 

properties of image textures.  

 

In addition, Heaps and Handel (1999) conducted experiments similar to those of Rao 

and Lohse (1996) using natural textures and their main conclusion was that perceived 

roughness might be context dependent, therefore it might be impossible to search for a 

standard set of dimensions. This also does not imply human use these characteristics as 

perceptual dimensions or that there exist linguistic terms for relating characteristics to 

the human mind as noted by Petrou, Talebpour and Kadyrov (2007).  

 

Similar terms 
 Group 1 Group 2 Group 3 

Term 1 Contrast Directionality Complexity 

Term 2 Coarseness Line Blob 

Term 3 Roughness Stringy Regularity 

Term 4 Hardness Waviness Busyness 
 

Table 2-1: Example table of the many terms used to describe the perceptual dimensions of surface textures 
where similar terms where group by the author to demonstrate they interlay in their description.   

 

As described in Table 2-1, many terms frequently appear in the description of the 

perceptual dimensions. These terms can be easily grouped into many subcategories; this 

is possible because many of the experiments used images as stimuli and by changing the 

physical properties of the surface, it is possible to change many related visual terms. For 

example, by changing the roughness of a surface its contrast and complexity and other 

terms will also change. Therefore, to avoid repeated or derivate terms the main 

perceptual characteristic to be researched was not only searched from visual studies but 

also from tactile ones. 
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Tactile perceptual spaces were researched by Hollins, Dacremont, Valentin and 

Giboreau (1993). They concluded that there is a perceptual tactile space consisting of 

three-dimensions; these are rough/smooth, soft/hard and sticky/slippery. Also Picard, 

Dacremont, Valentin, Giboreau (2003) concluded that there are three dimensions; these 

are hardness/relief, soft/harsh and thin/thick. Picard et al also investigated the frequency 

with which different terms are used when describing textures, and found that after soft, 

warm, and harsh, the main identifying characteristic is roughness (partly concluded also 

by Bhusham, Rao and Lohse’s texture lexicon (1997)).  

 

If one removes the qualitative terms from the tactile perceptual spaces, adds the most 

common visual characteristics and by knowing that there is partial perceptual 

equivalence between vision and touch in texture information as described by Picard 

(2006), then it is possible to distinguish roughness as the most used term to identify a 

characteristic from surface textures, as roughness is: 

i. the most used linguistic term to describe surface characteristics,  

ii. the most relevant tactile dimension, and 

iii. the most common visual term when classifying textured surfaces. 

  

As a result, I will conclude that roughness is the best starting perceptual characteristic to 

be investigated in the human perception of textured surface characteristics, followed by 

either directionality or coarseness. 

   

2.2 Physical measurements of roughness 

Many of the physical surface roughness measurements in widespread use today can be 

traced to the first half of the 20 century where a stylus is moved across a surface and its 

vertical deflection is recorded. From this stylus technique, hundreds of parameters or 

measurements can be calculated but only sixteen parameters are defined in the 

international standard for surface texture parameters (ISO 4287:1998), the most 

commonly used parameters in relationship to roughness are Ra, Rq and Rz.      

 

These sixteen parameters are divided into five sections of parameters: 

a. amplitude parameters (peak and valley), as described in Table 2-2; 

b. amplitude parameters (average of ordinates) , as described in Table 2-3; 
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c. spacing parameters, as described in Table 2-4; 

d. hybrid parameters, as described in Table 2-5 

e. curves and related parameters, as described in Table 2-6. 

 

Parameter Name Description 

Rp Maximum profile peak height The largest peak height within a sampling length 

Rv Maximum profile valley depth The largest depth within a sampling length 

Rz Maximum height of profile 
The sum of the height of the largest peak height 

and the largest depth within a sampling length 

Rc Mean height of profile elements 
The mean value of the height within a sampling 

length 

Rt Total height of profile 

The sum of the height of the largest profile peak 

height and the largest profile depth within the 

evaluation length 

 

Table 2-2: Summary of the amplitude parameters (peak and valley) as defined in the international standard 
EN ISO 4287:1998. 

 
 
The amplitude parameters using peak and valleys only account for the variations at 

random locations. For this reason, these parameters will serve little purpose in finding 

the perceived roughness of a textured surface. However, these are more suitable for 

identifying defects or anomalies in surfaces.  

 

The amplitude parameters using ordinates are more likely to be linked to perceived 

roughness as they take into account the statistical appearance of the surface as a whole. 

From these parameters, Ra is the most widely used parameter but this only measures the 

arithmetic mean from the surfaces which is insufficient to describe or differentiate the 

surface appearance as demonstrated in Figure 2-1 where the three profiles have the 

same Ra value. For this reason, this parameter will not be considered any further to be 

used in this thesis.   

 

 

 
Parameter Name Formula Description 
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Ra 
Arithmetical mean 

deviation of the 

assessed profile 

1
݈ න |ܼሺݔሻ|

௟

଴
 ݔ݀

The arithmetic mean of the absolute 

ordinate values Z(x) within a 

sampling length (l). 

Rq 
Root mean square 

deviation of the 

assessed profile 

ඨ
1
݈ න |ܼଶሺݔሻ|

௟

଴
 ݔ݀

The root mean square value of the 

ordinate values Z(x) within a 

sampling length (l). 

Rsk 
Skewness of the 

assessed profile  

1
ܴ௤

ଷ ቈ
1
ݎ݈ න ܼଷሺݔሻ

௟௥

଴
 ቉ݔ݀

The quotient of the mean cube value 

of Z(x) and the cube of Rq within a 

sampling length 

Rku 
Kurtosis of the 

assessed profile 

1
ܴ௤

ସ ቈ
1
ݎ݈ න ܼସሺݔሻ

௟௥

଴
 ቉ݔ݀

The quotient of the mean cube value 

of Z(x) and the forth power of Rq 

within a sampling length 

 

Table 2-3: Summary of the amplitude parameters (average of ordinates) as defined in the international 
standard EN ISO 4287:1998. 

 

 

 

 

 
 

Figure 2-1: Three different surface profiles with the same Ra value. 

 
 
Parameter Name Formula Description 

RSm Mean width of the 
1
݉ ෍ ௜ݏܺ

௠

௜ୀଵ
 The mean of the profile element 
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profile elements widths Xs within a sampling length 

 

Table 2-4: Summary of the spacing parameters as defined in the international standard EN ISO 4287:1998. 

 
 
Parameter Name Description 

RΔm 
Root mean square slope 

of the assessed profile 

The root means square of the ordinate slopes dZ / dX, 

within a sampling length. 

 

Table 2-5: Summary of the hybrid parameters as defined in the international standard EN ISO 4287:1998. 

 
 
Parameter Name Description 

Rmr(c) 
Material ratio of the 

profile 

Ratio of the material length of the profile elements at a 

given level c to the evaluation length. 

Abbot 

Firestone 

Curve 

Material ratio curve of 

the profile 

The curve representing the material ratio of the profile as a 

function of level. 

Rdc 
Profile section height 

difference 

Vertical distance between two section levels of given 

material ratio. 

Rmr Relative material ratio 
The material ratio determined at a profile section level, 

related to a reference. 

 
Profile height amplitude 

curve 

The sample probability density function of the ordinate 

Z(x) within the evaluation length. 

 

Table 2-6: Summary of the curved and related parameters as defined in the international standard EN ISO 
4287:1998. 

 
 
The spacing, hybrid, curved and related parameters will not be used as some of these are 

defined only over an evaluation length or they can be represented statistically by 

simpler parameters (like Rq). More information about all the parameters can be found in 

the international standards (ISO 4287, 1997) (ISO 4287, 1998) (ISO 4288, 1998) (ISO 

11562, 1998) (ISO 12085, 1998) (ISO 2632/2, 1985) (BS 1134-1, 1988) (BS EN 623-4, 

2004). 

 

Therefore, the most suitable physical parameters to consider as a base for perceived 

roughness are Rq, Rsk, and Rku, as all of these are statistical measurements that take into 
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account the surface as whole. From these, Rq (RMS deviation) is the easiest to calculate 

and the most used in calculations and the most used also in instruments from the three. 

As a result, this thesis will focus only on Rq. 

 

Note that the international standard stipulates that the value of Rq must be calculated 

without surface waviness (W), but unfortunately, it does not specify this waviness 

measure. For that reason, values of W will not be considered in our calculations of Rq. 

 

Rq is defined using or in term of the profile for a surface; its definition for a three 

dimensional surface has not yet been approved but its mention in the standard proposal 

N756 (ISO RC 213 Workgroup 16, 2005). The definition of the RMS roughness for 

three-dimensional surfaces (Rq or σ) used in this thesis is described in Equation 2-1. 

Where Z(x, y) represents the height at a point (x, y) in the surface and ߪߤ ൌ

 ଵ
ெே

∑ ∑ Z൫x୧ , y୨൯.Nିଵ
୨ୀ଴

Mିଵ
୧ୀ଴  

  

 

σ ൌ  ඩ
1

ܰܯ ෍ ෍ ൣZ൫x୧ , y୨൯ െ ൧ଶߪߤ
Nିଵ

୨ୀ଴

Mିଵ

୧ୀ଴

 (2.1)

 
 
 
There are many other three dimensional measurements and techniques (like fractals) to 

assess physical surface roughness but none of these will be used as we can define 

roughness just with Ra (Blunt and Jiang, 2003) (Schmahling, Hamprecht and Hoffmann, 

2006) (Jahn and Truckenbroth, 2003) (Hyslip and Vallejo, 1997).  

 

2.3 Related studies in the perception of roughness  

This section will summarise studies in relationship with the perception of roughness by 

touch, vision or both. Many more studies related to roughness and other perception 

mechanisms like sound and taste can be found but they will not be discussed as its very 

difficult to relate them to this work (Shirado and Maeno, 2005) (Douiri, Khoudeir and 

Olivier, 2001) (Engelena, Wijka, Van der Biltb, Janssena and Bosma, 2005).  This 

section will first summarize the perception of roughness by touch, then by haptic touch 
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or by imagining touching surface. It will then summarize studies of touch and vision 

combined, finishing with studies in the visual perception (or appearance) of roughness 

in surfaces. 

 

There have been many studies of touch perception (active and passive). For briefness, 

only those concerned with the estimation or discrimination of roughness in surfaces will 

be discussed.  

 

The skin of the fingers has four classes of receptors; the structure and function of these 

are fully described by Phillips, Johansson and Johnson (1992). One hypothesis of tactile 

perception is Katz’s hypothesis, were vibration cues are used for fine textures and 

spatial cues are used for coarse textures. Experiments by Hollis and Risner (2002) 

concluded that spatial cues are perceptible down to a spacing of 0.1 mm between 

elements, and that movement was required for elements below 0.1 mm. This claim is 

also supported by neurophysiological experiments by Yashida, Gibb, Dorsch, Hsiao and 

Johnson (2001) were they concluded that spatial variation in SA I receptors is the only 

neural measurement that correlates with perceived roughness in fine textures (0.1mm to 

2.0mm). Bensmaia and Hollins (2003) suggest that the roughness of finer textures (< 

0.2mm) is determined by the power of the vibrations caused by the scanning with a 

finger, weighted by the sensitivity of the Pacinian receptors.        

 

In further studies of tactile perception, Meftah, Belingard and Chapman (2000) used a 

passive presentation in their experiments and varied the spatial period of dot patterns. 

They concluded that perceived roughness increases approximately linearly with spatial 

period (in the direction of the surface motion) over the range 1.5mm to 8.5mm. They 

also concluded that scanning speed had no effect on perceived roughness.  However 

Casio and Sathian (2001) concluded that temporal cues also affect perceived roughness, 

as they could prove that changing either the inter-element spacing or the element width 

had a systematic effect on perceived roughness.  It was also found by Gamzu and 

Ahissar (2001) that temporal cues are essential for texture exploration. 

 

Smith, Chapman, Deslandes, Langlais and Thibodeau (2002) followed Meftah et al’s 

experiments by looking for correlations between subjective roughness estimates and 

measurements of the forces exerted on a surface by a moving finger. They found a 
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strong correlation between roughness and the RMS variation of the force rate during a 

single stroke. Finally Gibson and Craig (2002) concluded that measurements of tactile 

sensitivity using gratings and orientation (square wave gratings presented at different 

orientations) are consistent and valid measurements of spatial acuity. Whilst 

measurements of tactile sensitivity using smooth and grooves (smooth domed contactor 

or equal-width grooves and ridges) are inconsistent with previous results. Gibson et al 

suggest that spatial and intensive factors are both involved in the tactile perception of 

perceived roughness. 

 

The previous experiments on tactile perception of surface roughness can be related to 

visual perception of surfaces as discussed by Lederman and Abbott (1981) who 

concluded that subjects performed texture identification with comparable accuracy and 

precision whether using touch, vision or both together. In later work, Lederman 

proposes a modality appropriateness interpretation of inter-sensory integration, 

according to which subjects weight differently the input of touch and vision depending 

on the task. For example, there was a greater emphasis on tactile perception when 

judging roughness whilst there was a greater emphasis on visual perception when 

judging spatial cues (Lederman, Thorne and Jones, 1986).  

 

Evidence for modality appropriateness implies that tactile and visual perception of 

roughness are not entirely similar (Picard, 2006), and this is shown in experiments on 

the weighting of the two senses using real surfaces or haptically displayed ones 

(Weiskopt and Ertl, 2003) (Ballesteros, Reales, de Leon and Garcia, 2005). For that 

reason, the following discussion will concentrate on the visual appearance of surface 

roughness only. 

 

There is little work related to the visual perception of roughness. Most is related to the 

perception of roughness in just one type of surface, for example in paper (Beland and 

Bennet, 2000), paintings (Cai and Siegel, 2002), textiles (Lee and Sato, 2001), paint and 

steel (Scheers, Vermeulen, De Mare and Meseure, 1998), and carpet (Pourdeyhimi and 

Sobu, 1993) 

 

Unfortunately, none of these studies advances me to a general model for how roughness 

is perceived in surfaces. As a possible source of evidence on which to base a more 
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general model of visual perception of texture, I will next consider the literature 

concerning the workings of the human visual system, especially V1 mechanisms 

(Olshausen, 2005).  

 

Landy and Graham (2004) provide a short summary of the most important studies in 

texture discrimination and edge detection. Perception in vision consists of a series of 

spatial frequency channels and filters. The first order spatial frequency channels have 

been extensively studied, for example, the contrast sensitivity function is viewed as an 

envelope of narrow band spatial and frequency tuned mechanism (Campbell and 

Robson, 1968).  Whilst second order processes in vision vary, the most used model is 

the “back-pocket model” as this is usually used routinely to make sense of results as 

discussed by Landy and Oruc (2002). This model will be used for the experiments in 

this thesis, as described in Chapter 7.  

 

Finally Ho, Landy and Maloney (2006) also investigated the stability of judgements of 

roughness when the illumination was changed, the effects of viewpoint (Ho, Landy and 

Maloney, 2007) and the effect of gloss (Ho, Landy and Maloney). These studies are 

discussed extensively in later chapters. 

 

2.4 Summary and Discussion 

Roughness was found to be an important perceptual dimension from visual, tactile and 

linguistic studies, and will therefore be the research topic for this thesis. There are many 

physical measurements for roughness but RMS roughness (Rq or σ) will be used, as it 

the simplest possible measurement that describes surfaces as a whole in a statistical 

manner.    

 

From the literature, it was found that there are many studies in the area of tactile 

perception of roughness. These show that the minimum spatial resolution is 0.1 mm and 

values below this are perceived using vibrations instead. These can be related to visual 

perceived roughness, but not fully, as there are studies that prove that humans weight 

differently vision and touch depending on the task (modality appropriateness), 

suggesting that perception in vision and touch are not entirely similar.  
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Studies in the visual perception are scarce therefore in the next chapter a novel 

methodology will be proposed to facilitate the study of surface characteristics. 
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CHAPTER 3  

A GENERAL METHODOLOGY 

 

 

The studies and methods reviewed so far all share an important limitation, they work 

with single still images of textured surfaces, or synthetic images derived from them, and 

not with the surfaces themselves. Furthermore, these images have been obtained under 

arbitrary and unspecified illumination therefore these will contain ambiguities about 

surface relief and reflectance that cannot be resolved, as in a natural situation, by 

altering the relative orientation of the surface and the illuminant position.  

 

As a result, this chapter will discuss techniques to address these limitations. It will also 

describe a novel methodology later used in Chapter 6 to discover how roughness is 

perceived in textured surfaces. 

 

This chapter is divided in four sections, the first one will discuss how changes in 

illuminant and viewpoint affect perceived roughness (Section 3.1), followed by Section 

3.2 summarizing the different kinds of stimuli found in previous studies, whilst Section 

3.3 will summarize different psychophysical methods that can be used for the general 

methodology when experimenting in this thesis. The chapter will end with a short 

summary (Section 3.4).    
  

3.1 Illuminant and viewpoint position 

Illuminant and viewpoint position play an important role in perception as changing the 

illuminant position affects the statistics of the surface whilst changing the viewpoint 

solves ambiguities. The first part of this section will talk about the illuminant position 

whilst the second half will discuss viewpoint and perception. 

 

By looking at the example in Figure 3-1, it is possible to notice that the appearance of 

the same surface differs when changing the illuminant position; Chantler showed that 

variation in illumination conditions adversely affected classification performance 

(Chantler, 1995).  
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Figure 3-1: The effect of varying illumination conditions on the same surface is shown above. The light is 
position on top in the first surface, in the middle for the second surface and on the right for the last surface. 

 
A way of overcoming this problem is to use sets of photographs obtained under multiple 

precisely controlled illumination conditions, such as the image database used by Dana, 

Nayar, Ginneken and Koenderink (1997). Histogram models (Dana and Nayar, 1998) 

(van Ginneken, Koenderink and Dana, 1999) and correlation models (Dana and Nayar, 

1998) for the textures in this database exist which explain the variations in the 

illumination conditions and texture. 

 

With the help of this method of using images with controlled illumination conditions, 

Koenderink (2003) (Koenderink, Van Doorn and Pont, 2004) proved with 

psychophysical experiments that humans can judge the direction of illumination from 

image textures, therefore confirming the effectiveness of the method and overcoming 

the uncontrolled light problem.  

 

In addition, to solve this problem it is also possible to create models of surfaces that are 

rendered graphically under specified illuminations. This second method offers the 

advantages of speed and flexibility, but the quality of the model for the surface and its 

renderings must be on a par with real samples. 

 

Ho, Landy and Maloney (2006) used this approach to investigate the stability of 

judgements of roughness when the illumination direction was changed. They used 

surface models made up of irregular arrays of triangular faces, varying the mean height 

of the facets to create surfaces of different roughness. Observers were able to judge 

relative roughness of images presented in pairs, but not to compensate fully for 
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variations in the elevation of the light source (50 to 70 degrees), perceiving greater 

roughness with decreasing elevation. 

 

The method used in this thesis will be to create models of surfaces that are rendered 

under specified illuminations, but these surfaces will also be animated in real time as if 

they were handled in a natural manner. This natural animation will have a constant 

illuminant position, similar to the static position of the sun, whilst the rotation will be 

similar to an observer picking up an object and wobbling it to perceive more accurately 

its characteristics. At the same time, by rotating the surface, the depth perception of the 

rendered surface is solved by the motion as described by Anderson and Brodley (1998) 

in their studies, and by Ichikawa, Nishida and Ono (2004). 

 

Viewpoint and lighting ambiguities are also solved by adding motion to the surfaces. 

These ambiguities are: 

1. Generalized bas-relief ambiguity (GBR), produced when the observers’ 

viewpoint is fixed and the light is changed. Just consider a set of images 

produced with the same viewpoint but under all possible light positions, the 

ambiguity is produced when an object with different shape produces the same 

image as another object because the position of its illuminant has changed 

(Belhumeur, Kriegman and Yuille, 1999), an example is shown in Figure 3-2. 

 

 

 
Figure 3-2: Illustration of the bas-relief ambiguity with two cylinders of equal height viewed from above. 

Because the elevation of the light source is lower for the cylinder on the left, it appears to be taller than the 
cylinder on the right. 
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2. Viewpoint-lighting ambiguity (KGBR) is similar to the bas-relief ambiguity 

but here viewpoint is also considered to produce similar sets of images (Yuille, 

Coughlan and Konishi, 2003). 

 

Solving viewpoint and light ambiguities is possible by humans because we can retrieve 

three-dimensional shape from motion or from binocular disparity. The capacity to 

extract shape or structure from motion is also known as motion parallax (Gibson, 

Gibson, Smith and Flock, 1959) or the kinetic depth effect (Koenderink, 1986). It was 

proven by Dijkstra, Cornilleau-Peres, Gielen and Droulez (1995) that it is possible to 

detect shape from small field stimuli (< 8 degrees) better when using either head 

translation or object rotation than when using object translation only.  

 

Summarizing, the general method for this thesis will create models of surfaces that are 

rendered graphically under specified illuminations; these will be animated by rotating 

the surfaces to solve illuminant location problems, light and viewpoint ambiguities. The 

construction details of the surfaces and animation are further detailed in Chapter 4. The 

next section will describe the stimuli previously used in studies and the reasoning 

behind using natural surfaces for the stimuli in this thesis. 

 

3.2 Natural synthetic stimuli 

Stimuli for psychophysical experimentation of textures or surface textures can be 

separated into five categories: 

 

1. Synthetic textures involving texture elements. These include dots, line segment, 

figure-like Ls, Ts and Xs, as illustrated in Figure 3-3. This use of randomly 

placed elements was developed by Julesz (1987) in his definition of textons, 

and also later used by Malik and Perona (1990) in their studies. This type of 

stimulus will not be used because it does not resemble surfaces found in nature. 
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Figure 3-3: illustration of three textures using dots, lines and Ls, Ts and Xs. 

 
2. Natural images of textured surfaces. These will not be used in this thesis, 

because their parameters (e.g. RMS roughness) cannot be controlled, and the 

illumination  must  be controlled for every image as previously described. There 

are many studies in perception using natural images (e.g. Leung and Malik 

(2001)); the studies related to roughness perception are described throughout 

this thesis. 

 

3. Synthetic images. These are created synthetically but resemble images of real 

textured surfaces closely enough to engage the same perceptual mechanism (see 

Figure 3-4).  An example of the applications of these surfaces is described in 

Balas (2006) who tested the effects on observers of artificial images produced 

using a texture synthesis algorithm (Portilla and Simoncelli, 2000) that 

resembled images of real textured surfaces. Another example is Gurnsey and 

Fleet’s study (2001) using stimuli composed of band-pass images produced by 

filtering a single sample gaussian noise with an isotropic filter. These surfaces 

will not be used as they do not convey depth information, do not have a natural 

appearance and do not account for illumination.  
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Figure 3-4: Example of two simple synthetic images constructed with gaussians. 

 
4. Geometrical surfaces. These are created by grooves, cavities, elevations or any 

other geometrical modulation of the surface height. Ho, Landy and Maloney  

use surfaces composed of randomly oriented Lambertian facets to discover how 

viewpoint (2007) and direction of illumination (2006) affect roughness. Other 

studies include surfaces composed of v-shaped cavities (e.g. Torrance and 

Sparrow (1967)). 

 

5. Natural synthetic surfaces. These surfaces look like samples found in the real 

world (see Figure 3-5). Therefore, observers can interpret them more 

consistently, making psychophysical measures based on them more reliable.  

The most common natural synthetic surfaces are fractal surfaces as described by 

Russ (1994).   

 
As discussed previously, natural synthetic surfaces are the surfaces best suited for the 

experiments in this thesis. The type of surfaces used will be 1/Fβ noise surfaces as they 

have the advantages of possessing a natural appearance and they are isotropic in nature. 

A full description of the construction and mathematical model of these 1/Fβ noise 

surfaces is located in Chapter 4.   
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Figure 3-5: On the left a wireframe illustration of a 1/Fβ noise surface whilst on the right a different surface 
fully rendered.  

 

3.3 Comparing psychophysical methods 

Finding a well-suited method to obtain information about perceived roughness from the 

observers is the last step to finish the methodology to be used later on in the 

experiments.  To do this, a short summary about common psychophysical methods will 

precede the discussion about the method selected; further information about each 

method can be found in Ehrenstein and Ehrenstein (1999) chapter about psychophysical 

methods. 

 

Psychophysical methods enable the researcher to determine the relationship between 

perceptual experience and physical stimuli.  They include: 

 

• The pairwise comparison method presents stimuli in pairs to an observer, who 

judges which of each pair is greater in some respect, such as roughness. This 

method produces reliable results but is time consuming. In our case, this method 

would be impractical to implement due to the number of stimuli and the added 

time of pairwise comparing stimuli with an animation (e.g. a five-second 

animation).  

 

• The method of adjustment lets the observer adjust the stimulus until it becomes 

just noticeable, or until it just matches another, standard stimulus. This method 

provides the added advantage of speed and flexibility as it is possible to choose 

the adjustable parameter from the generated stimuli. 
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• The method of limits presents changes in the stimuli in discrete steps until a 

response is recorded. This method is also more time consuming than the method 

of adjustment, and for that reason it will not be used. 

 
• The method of constant stimuli presents a set of stimuli in random order to the 

observer, who reports whether or not each stimulus was detected, or whether it 

was greater or less than a comparison stimulus in some respect. This method 

will not be used, as it is more time-consuming than the method of adjustment.  

 
•  The method of adaptive testing is used to keep the test stimuli as close as 

possible to the threshold by adjusting the stimuli. The staircase method is such 

an adaptive method. Although this method reduces the time by reducing the 

number of stimuli, it is still more time consuming than the method of 

adjustment. 

 
•  The category scaling method consists of sorting a set of stimuli in correct order 

of intensity. This method is quite useful to recognize in which direction a 

parameter influences perception. There are further similar methods to calculate 

numerical magnitudes but these will not be used, as the thresholds of roughness 

are unknown. 

 
• Other methods including force-choice, signal detection, chronometric, 

comparative psychophysics, reflex, stimulus associated operant conditioning and 

cross modality methods will not be discussed, as they are difficult to implement 

for the investigation of perceived roughness (Ehrenstein, et al., 1999).    

 
As previously described, only two methods will be used in this thesis 

1. Category scaling will be used in Chapter 6 to determine how parameters of the 

surface influence perceived roughness.   

2. The method of adjustment will be used in Chapters 6 and 8. Although it is 

possible to use pairwise comparison, as proven by Ho, Landy and Maloney 

(2007), it is impractical for our experiments due to the added length of using 

stimuli with animation. As a result, the method of adjustment provides added 

speed and more flexibility.  
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The performance of the method of adjustment was calculated in later experiments and 

the results of the performance is described in Appendix 3-A. As a result, it will be used 

for the methodology proposed in this chapter. 

 
Please note that it can be argued that the ability of the observers’ to detect  explicitly the 

equivalence in roughness between two surfaces may not reflect the true sensitivity of 

the perceptual system to differences in surface roughness, different methods (e.g. RTs, 

EEG, functional imaging, error rates, etc) might show if the psychometric experiments 

were correct but this are outside the scope of this thesis. 

3.4 Summary and Discussion 

In this chapter, a general methodology was proposed which consists of four main parts: 

i. To create models of surfaces rendered under specified illuminations so that 

surface characteristics can be perceived independently of illumination direction;  

ii. Add motion (rotation) to the stimuli which will help in the perception of depth 

and at the same time avoid illumination and viewpoint ambiguities; 

iii. Use natural looking stimuli models to try to avoid biasing the experiments 

towards specific mathematical models; 

iv. Use the method of adjustment to measure human perception of roughness in the 

surfaces.   

 

 

Points (i) and (iii) will be discussed in the next chapter, where the model of the surfaces 

will be explained in its entirety, followed by how the animation (ii) was developed. 

Later in chapter 6, the method of adjustment (iv) will be used to discover how the 

surface parameters influence perceived roughness. 
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CHAPTER 4  

MODELLING THE STIMULI 

 

 

In this chapter, the general methodology described in the Chapter 3 will be extended to 

describe the stimuli (1/Fβ noise surface) for the experiments in perceived roughness. 

These surfaces will be discussed in full depth, were a general mathematical description 

for them will be formulated also the three-dimensional construction (including 

rendering) of the model will be described, including general algorithms and techniques. 

Finally, the animation method will be illustrated. 

   

The chapter is structured as follows, section 4.1 will discuss the general model for 1/Fβ 

noise surface were the influence of all the parameters will be illustrated; section 4.2 will 

follow by describing how the surfaces were rendered in three-dimensions whilst section 

4.3 will discuss the animation of the stimuli. A final section (section 4.4) will 

summarize the chapter as a whole and will discuss the general conclusions about the 

stimuli.   

 

4.1 1/Fβ noise surfaces 

As previously explained in the methodology chapter, 1/Fβ noise surfaces are perfect for 

the experimentation as they congregate these essential characteristics: 

• they look natural by simple inspection; 

• they are parsimonious (i.e. have a low number of parameters); 

• their structure is isotropic in nature, and  

• they are modelled easily in the frequency domain which helps when 

experimenting with frequency models related to the human vision system. 

 

The 1/Fβ noise surfaces are generated by producing a height map with a magnitude 

spectrum H(f) scaled with spatial frequency as shown in equation 4.1, where β is the 

roll-off factor of the surface height magnitude spectrum (or the inverse of its slope in 
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log H and log f coordinates, as shown in Figure 4-1), σ is the RMS height of the surface 

and N(β) is a normalizing factor.   

 

 

Hሺ݂ሻ ൌ
σ

Nሺߚሻ ݂ିఉ (4.1)

 

 

     

 
Figure 4-1: Graphical demonstration of H(f) in the frequency domain, left for 1D whilst right for 2D (β = 2.0). 

 
 
The height maps have a random-phase (see Figure 4-2), the θ symbol will describe the 

phase of the stimuli and any numerical value next to it will correspond to the random 

seed used with the Matlab random number generator. The code for generating θ is 

located in Appendix 4-A whilst the code to generate the magnitude in the frequency 

domain is located in Appendix 4-B. Therefore, the reader can accurately reconstruct any 

surface height map from this thesis. 

 

 

 
Figure 4-2: two surfaces with different random phase values θ. 
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The N(β) value is relative to the roll-off factor, these values can be obtained with 

Parseval’s theorem (Appendix 7-A) or by changing the actual stimuli from frequency 

domain to spatial domain or vice versa. The actual value of each of the N(β) values is 

enumerated in Appendix 4-C. 

 
The magnitude spectrum for the height map H(f) was sampled at 256 cycles per image 

width (cpi) as this is the minimum resolution which renders all the frequencies 

necessaries to cover human vision acuity (0.1 cpd to 30 cpd), as described by Campbell 

and Robson (1968).  

 
The effects of varying the two parameters of the height magnitude spectrum, the RMS 

height (σ) and the roll-off factor (β) are illustrated for three-dimensional rendered 

examples of the surfaces in Figure 4-3. 

 

 
 

Figure 4-3: The top row represents the effects of varying σ, whilst the bottom row illustrates the effect of 
changing β. 

 

As illustrated previously, the final renderings are full three-dimensional surfaces, these 

were produced from the height maps calculated using Formula 4-1 (code Appendix 4-

D). The next section will fully describe how the surfaces were transformed from simple 

height maps to full three-dimensional surfaces.  
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4.2 Construction of the stimuli 

There are many techniques to convert a height map to three-dimensional surfaces (see 

Figure 4-4); these have advantages and disadvantages in their implementations and their 

rendering quality. As a result, to facilitate the description of the models I will divide this 

section into four parts: reflectance, geometry, cast shadows and the stand shape.  

 

  

 
Figure 4-4: On the left a simple height map whilst on the right the three-dimensional surface. 

 

The indirect light caused from the surface inter-reflections was not rendered, as it is 

impossible to realize them for real-time animations with the current hardware. 

Fortunately, research has demonstrated that inter-reflexions can facilitate the 

judgements of lightness (Gilchrist and Jacobsen, 1984) and surface contact (Madison, 

2001) but these do not provide additional information for the perception of the three-

dimensional surface shape as described by Liu and Todd (2004). 

 

The lightness of the surface is pre-determined by the albedo of the surface material. In 

optics, the reflectance is the amount of incident radiation reflected by a surface whilst 

the albedo of a surface is the extent to which the surface itself reflects light back. 

Therefore, the albedo depends in the material properties and not in its geometry. For the 

stimuli in the experiments, the albedo is set to 0.60 or 60% to emulate lightness similar 

to a rock material and this is a little bit brighter than soil or sand (0.40). Unit albedo was 

found to be too bright for the stimuli, for example an albedo near its unit value is bright 

snow with an albedo around 0.90 (Ress, 1990). 
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4.2.1 Light and reflectance 

To represent the reflectance many methods or formulas exist, the most important are: 

• Lambert model, which states that the radiation reflected, is proportional to the 

cosine between the observer’s line of sight and the surface normal. This model 

was first published by Johann Heinrich Lambert in his Photometria book 

(1760). This model has been widely used in psychophysical experiments and 

computer graphics since them, Koenderink, Van Doorn and Pont (2003) discuss 

Lambert’s law and perception in extend in his published work about the 

perception of light position. The Lambert model can be formulated as described 

in formula 4-2 in its modern form (Kilgard, 2000), where Iamb is the intensity of 

the ambient, Kdif is the albedo of the surface, L is the light vector and N is the 

surface normal vector.   

 

௟௔௠௕௘௥௧ܫ ൌ ௔௠௕ܫ ൅ ݇ௗ௜௙ · max ሺ0, L ל Nሻ (4.2)

 

 

• Blinn model is an empirical model extending the Lambertian’s one to account 

for specularities in the surface. This model was first described by James Blinn 

(1977) and it is shown in formula 4.3 where V is the view vector, H is the half 

vector between the light and view vectors and SH is the shininess factor. This 

model will not be used as our surfaces have only diffuse reflectance and 

specularities were not used to avoid confusing the observers.  

 

஻௟௜௡௡ܫ ൌ ௔௠௕ܫ ൅ ݇ௗ௜௙ · maxሺ0, L ל Nሻ ൅ ݇௦௣௘௖ · Iୱ୮ୣୡ · maxሺ0, H ל Nሻௌு (4.3)

 

 

• Phong model was the first model to account for specularities in the surfaces, 

this is another empirical model and it was designed by Bui Toung Phong 

(1975), this model is also not used, as it is similar to the Blinn model.  

  

• Ray tracing models are based on the idea to follow the rays of light from the eye 

position onwards; these models produce correct reflections and refractions for 

the surface but cannot be rendered in real-time. Wald, Friedrick and Marmitt 



  

 
31 

(2005) manage to render a surface with shadows (640x480 pixels) at just 0.3 

frames per second but this is too slow for the animations in the experiments, as 

a result, ray-tracing methods cannot be used for the stimuli.  

 
• Global illumination models take also into account indirect lighting, these are 

very accurate and can calculate the ambient intensity, but they are also very 

difficult to implement in real-time (Wald, Kollig and Benthin, 2002) (Benthin, 

Wald and Slusallek, 2003). 

 

In summary, the most suitable reflectance model for the experiments is the Lambert 

model as it has the advantage of being accurate and fast. The other models are either too 

slow for the animations of the surface in real time or are not relevant to this study.  

 

I would like to clarify that the surfaces for the stimuli used do not have microstructure 

as the resolution used for these texture pixel match the displays and each face is 

considered as a perfect diffuse with an albedo. Therefore, the surfaces have a 

Lambertian behaviour because they are free of scaling and resolution problems. An 

example of non-Lambertian behaviour caused by resolution is Opik’s (1924) classical 

description of the reflectance of the moon. Any models that incorporate microstructure 

into them will not be used because of the perfect resolution of the surfaces used in this 

thesis; an example of this unused model is the Oren and Nayar model (1994).  

 

 

 
Figure 4-5: A sample surfaces in fronto-planar view using per-pixel illumination illustrated with three 

different illuminant positions. 
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The surfaces are per-pixel illuminated; with this method, the light can be applied to 

every pixel to avoid resolution errors. In addition, this method produces better results 

than the normally used per-vertex illumination, which produces unrealistic effects in 

surfaces (Shreiner, 2003). An example of this per-pixel illumination is shown in Figure 

4-5. 

 

However, lighting does not constitute a complete surface; a method for displaying the 

surface geometry is also necessary. Otherwise, the result would look correct in fronto-

planar view but it would lack occlusions and edge in other views (e.g. profile). The 

technique of only illuminating the surface is called per-pixel bump mapping (Blinn, 

1978) and its disadvantages can be observed in Figure 4-6 when the surface is rotated.  

  

 

 
Figure 4-6: Example of a surface rendered in three different viewpoints with reflectance only. This surface 

lack silhouettes and occlusions when not taking into account structure or geometry.  

 

4.2.2 Geometry, occlusions, silhouette and edges  

There are two ways of displaying correctly the effect of geometry in surfaces; these are 

by either displacing each of the pixels to their correct position in a plane or by 

tessellating the plane or displacing each vertex correctly. The first technique is 

commonly referred as per-pixel displacement whilst the second one is called per-vertex 

displacement. 
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Per-pixel displacement mapping has the advantages of reducing the amount of vertex 

transformations in hardware and the amount of memory needed for the vertices. The 

most important and relevant per-pixel displacement techniques are: 

• Parallax mapping which was introduced by Kaneko et al (2001) in computer 

graphics were each pixel is offset in the (u, v) coordinates to represent correctly 

occlusions. The disadvantages of this method are the estimation artefacts, 

resolution problems and lack of cast shadows as shown in Figure 4-7. 

 

 
   

Figure 4-7: Parallax mapping example. Note the lack of edges, artefacts at the bottom and lack of cast 
shadows.  

 
• Horizon mapping improves on parallax mapping by encoding the height at each 

point of the surface, its drawbacks are that it requires eight times the texture 

memory and the edges are still missing (Sloan and Cohen, 2000). 

 

• Ray tracing implementations, these are more sophisticated and include casting a 

ray to displace correctly geometry as presented by Policarpo, Oliveira and 

Comba (2005) in their work about relief mapping  as demonstrated in Figure 4-

8. Alternatively, another example is per-pixel displacement mapping with 

distance functions by Donnelly (2005). Both of these suffer from approximation 

errors and lack of edges and silhouette. 
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Figure 4-8: Relief mapping example, note the cast shadows and improvement in artefacts but lack of edge or 

silhouettes. 

 
• Approximations errors were reduced by Oliveira and Policarpo (2005) in their 

newest work, and they also emulated silhouettes and edges by displacing 

inwards pixels and not filling holes. Although this technique produces all the 

necessary geometry elements in the surface, it is slow and still suffers from 

approximations caused by the tracing of the ray. A similar method is the one 

described by Hirche, Ehlert Guthe and Doggett (2004). 

 

• Finally view-dependent displacement mapping invented by L. Wang, X. Wang, 

Tong, Lin, Hu, Guo and Shum (2003) allows for the efficient rendering of self-

shadows, occlusions and silhouettes by performing its calculations in screen-

space. This method was later extended by Wang, Tong, Lin, Hu, Guo and Shum 

(2004) to fix minor problems and allow the rendering of closed geometry, they 

called it generalized displacement mapping. Although this method produces a 

very realistic and correct geometry, it will not be implemented for the 

experiments as this algorithm is patented and it requires also a great amount of 

texture memory.    

 

As summarized previously, per-pixel displacement suffers from three main problems: 

1. the real-time methods lack edges and silhouettes, 

2. the ray tracing algorithms have approximation errors, and 

3. few render cast-shadows at the same time. 
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Because the experiments need to be as accurate as possible, then approximation errors 

also need to be minimised; it is crucial for the perception of roughness that the stimuli 

are complete, including silhouettes and edges as it is unknown if observers use these to 

judge roughness. Cast shadows are necessary as these help human perceived better 

shape as described by Liu and Todd (2004). 

 

For those reasons, per-vertex displacement will be used to render the stimuli in the 

experiments as with this method all the disadvantages of per-pixel displacement are 

solved. Robert Cook (1984) was the first to introduce this method, this type of 

displacement has been used in passive renderers over the last few years as it produces 

excellent results. The disadvantage of using this method is that it needs a huge amount 

of memory and bandwidth to save all the vertices geometry and transformations. 

 

There have been studies to optimize the tessellation of the displacement maps to save 

vertices, like the work from Moule and McCool (2002) were they optimize meshes by 

doing a view-dependent tessellation. Alternatively, Lee, Moreton and Hoppe (2000) 

describe a method to optimize the displacement in their work referred as displaced 

subdivision surfaces. However because in the stimuli only surfaces are used, then it is 

possible to optimize differently the displacement for only the experiments in this thesis. 

 

To achieve maximum output speed, first a planar mesh is cached in the video card 

memory, as seen in the left side of Figure 4-9; this mesh will be process in strips, as it 

allows a more optimal concurrent processing in the video card as detailed in the 

NVIDIA programming guide (NVIDIA, 2005). Then each pixel will be displaced 

matching its position to the height map as detailed by Gerasimov, Randima and Green 

(2005). Finally, to avoid exceeding the video memory, the pre-displaced mesh is 

instantiated twice, therefore the height map is the only element of the surface that 

changes for each trial in the experiments. 
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Figure 4-9: Mesh on the left is loaded into video memory then is per-vertex displaced by a height map in real-

time. 

 

The height of the displaced mesh can be varied by programming the offset for each 

vertex in the graphics card. However, this method it is not suitable when displacing the 

surfaces with very large magnitudes as the frequencies (specially >128 cycles per image 

width) are stretched too much and form patches that are perceived as being very smooth 

because they constitute just displaced geometry (see Figure 4-10).  

 

 
 

Figure 4-10: Example of a simple polygon displacement, on the left a normally displaced polygon. Note how 
these appear very smooth. On the right, the correct shape of the sample. 

 
The final surface mesh consisted of a quarter of a million polygons, fully illuminated 

and with variable height, can be rendered interactively at least 60 times per second. 

However, it still lacks cast shadows, therefore in the next sub-section these will be 

added to the model.   

 

4.2.3 Cast shadows 

Excluding ray tracers, there are two main ideas for constructing real-time cast shadows: 
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1. Shadow volumes, this is an object space approach. These methods use complex 

and expensive calculations to render the shadows, these also use large amounts 

of fillrate (Wimmer, Scheerzer and Purgathofer, 2004) but they deliver high 

precision shadows. These algorithms cannot be implemented for the surface 

rendering as they only calculate shadows from one object cast into a second one 

(or a surface) and not to itself (Crow, 1977).  

 

2. Shadow mapping, are simple methods where the calculations are done in scene 

geometry, therefore all light shadows are calculated in one extra pass (object-

cast and self-cast shadows). The drawback of these methods is that they suffer 

from aliasing artefacts as these use an image space approach (Lipp, 2005). 

 

Shadow volume techniques cannot be used because of the high count of polygons per 

surfaces (quarter of a million) and the inability of this to produce self-cast shadows.  

 

The shadow mapping algorithm used to render the cast shadows in the surfaces consist 

of the following steps (as illustrated in Figure 4-11): 

1. The scene is rendered, as seen from the light position, in a shadow map image 

(depthshadow) where every pixel depth from the shadow plane is stored using the 

z-buffer of the scene. 

2. The scene is rendered from the view position and stored in perspectiveview, this 

view is changed to depthview by first multiplying it by the inverse model view 

matrix (world space), then transforming it to a shadow plane projection, later 

normalizing it to device coordinates (NDC) and scaled to [0,1] and finally 

applying a perspective division. Everitt, Rege and Cebenoya (2002) discusses 

thoroughly the matrices calculation and implementation for this step.   

3. The two depths are then compared so if depthview > depthshadow then the pixel P 

lies in shadows otherwise the Lambertian reflectance is applied. 
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Figure 4-11: illustration of the shadow mapping method. 

 

Unfortunately, two kinds of artefacts occur when using the shadow mapping technique 

as this is an image space approach. The first artefact known as perspective aliasing or 

projective aliasing is caused by the discrete nature of the depth maps where aliasing 

exists when the two planes do not match in pixel size (Wimmer, Scheerze and 

Purgathofer, 2004). The second kind of artefact is known as surface moiré or incorrect 

self-shadowing and it is produced by the quantized depths, because these have finite 

precision (Willians, 1978). 

 

To fix some of the aliasing effects, first both of the depth maps were over-sampled at 

four times (4096x4096) the normal screen resolution (Fernando, Fernandez, Bala and 

Greenberg, 2001). Second, the depth maps from the light position were rendered twice, 

front and back faces (Weiskopt and Ertl, 2003). Finally, the z-values of depth maps 

were changed from logarithmic scale to linear scale (Brabec, Annen and Seidel, 2003). 

 

The cast-shadows in the surfaces were also softened using a 3x3 pixel gaussian blur to 

give them a more natural look and feel, as soft-shadows are impossible to implement in 

real-time for the surfaces (Hasenfratx, Lapierre and Holschuch, 2003). 
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Due to hardware limitations, algorithms that are more complex were not implemented, 

like for example: perspective shadow maps (Stamminger and Drettakis, 2002) (Kozlov, 

2004), light space perspective shadow maps (Wimmer, Scheerze and Purgathofer, 

2004), variance shadow maps (Donnelly and Lauritzen, 2006), trapezoidal shadow maps 

(Martinand Tan, 2004) or convolution shadow maps (Annen, Mertens, Bakaert, Siedel 

and Kautz, 2007). 

   

4.2.4 Stimuli stand 

Finally, to avoid biasing the observers with any edges in the stimuli mesh and to 

achieve a more ‘real sample’ appearance; the final meshes were cropped with a circular 

circumference to produce a stand. These can be observed in Figure 7-12; this stand had 

a height of 2.5cm. 

 

 

 
Figure 4-12: On the left the stand shape as a height map and on the right the final rendering of the stimuli. 

 
As described previously, the stimuli will be rendered with Lambertian shading, where 

per-vertex displacement mapping is used to render correctly the geometry and the cast 

shadows are calculated using shadow mapping techniques. Due to limitations in 

hardware, better cast-shadows and inter-reflections were not implemented but I am 

confident this method produces the best possible tradeoffs between having an 

interactive stimuli and quality. The next section will describe how the animation was 

developed. 
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4.3 Animating the stimuli 

As described in the previous chapter, the stimuli are animated to avoid light and 

viewpoint ambiguities and at the same time allow depth perception. An experiment was 

designed first to discover how subjects manipulate the motion of surfaces. 

 

Before the experiment could be realized, a method was needed so observers could 

manipulate the surfaces. A mouse or keyboard interface was chosen instead of 

specialised hardware as most subjects use them every day.  Four usable interfaces exist 

that can use the keyboard and mouse to rotate the surfaces: 

1. Euler angles (also known as yaw, pitch and roll); the advantage is that subjects 

are familiar with them. However, the limitation is that the interface produces the 

‘gimbal lock’ problem where one rotational gimbal cannot compensate for 

rotations in that direction anymore therefore not all the viewpoints can be 

specified.   

2. Vector roll, this was popularized by OpenGL and their GLRotate function where 

the subject chooses a roll angle and an X, Y, Z-axis. This interface can describe 

any viewpoint but it is very unintuitive.  

3. ArcBall using quaternions allows the description of a three-dimensional 

viewpoint by wrapping a ball sphere around the object (see Figure 4-13). This 

interface was first implemented by Ken Shoemake (1985) and the benefits are 

that the interface is very intuitive and any viewpoint can be fully described. 

 

 

 
Figure 4-13: Illustration of an arcball interface. 

4. Elevation and azimuth, this is where the subjects specify both parameters. The 

advantages are that is very intuitive and the parameters do not interact between 
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each other, the disadvantages are that it is not possible to specify all of the 

viewpoints. 

 

From the four interfaces, the ArcBall was chosen as it can specify all the viewpoints and 

it is very intuitive; this was also concluded by Hinckley, Tullio, Pausch, Proffitt and 

Kassell (1997). They also found in their usability studies that the ArcBall had an 

accuracy of 5.1 degrees. 

 

As mentioned earlier, an experiment was developed to discover the preferred viewpoint 

when judging surfaces; this will later be used for the animations of the stimuli. In this 

experiment, two surfaces where rendered at the same time, with different β {1.8, 2.2} 

and σ {0.8cm, 1.2 cm} and θ {1, 2} values. The observers were then asked to annotate 

which surface felt rougher if touched; the subjects had an ArcBall interface to rotate the 

surface and were not time constrained when making their decisions. All rotations were 

saved at each frame and the experiment was setup as described in Chapter 5. 

 

 
 

Figure 4-14: The angle between the surface normal and the light position and the percentage of time each 
observer spent comparing the two surfaces. 

 

Seven observers took part in the experiment; the results show no preference to any 

specific slant, tilt or rotation. However, there is a clear indication that observers 

preferred to have an angle between the surface normal and the light of about 60 degrees 
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as show on Figure 4-14 for each observer (values described in Appendix 4-E) and 

Figure 4-15 for all the observers. A gaussian function was fit to the average of the 

results to show that the observations follow this function, which has a centre or mean of 

60 degrees and a variance of 8 degrees.  

 

 
 

 
Figure 4-15: The average of the preferred view for all the seven observers and a fitting gaussian function to the 

average of these results. 

 

 

It was also noticed from the experiment data, that the observers wobble the surfaces, as 

they would do if they had the real samples. For that reason, an animation was developed 

which encapsulates the preferred viewing angle and the wobbling motion. This was 

done by selecting a section of the saved animation which had both of the previous 

attributes (angle and wobble). The final animation to be used in the next experiments is 

illustrated in Figure 4-16 for the angle between the surface and the light. Figure 4-17 

illustrates the three-dimensional rotation of the surface as seen from the light position to 

the surface normal.     
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Figure 4-16: Movement path of the animation for later experiments. 

 

 
 

Figure 4-17: Rotation of the surface normal as seen from the light position. 

 

4.4 Summary and Discussion 

This chapter discusses and summarizes how 1/Fβ noise surfaces were constructed. It 

starts by giving the general mathematical formula for the surfaces and then it illustrates 

how each parameter changes roughness. 
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In its second part, it discusses the general construction and rendering of the 1/Fβ noise 

surfaces, including a short summary of the related algorithms for reflections, geometry 

representation and cast shadows. It concludes that the best way of rendering the surfaces 

is a trade-off between accuracy and quality, where the surfaces have perfect 

illumination and geometry but cast shadows and inter-reflections can be improved in the 

future. The final render uses per-pixel Lambertian illumination with per-vertex 

displacement mapping to represent the geometry and cast shadows produced using 

shadow mapping techniques. 

 

Finally, the last section describes the animation and it discusses also that this was 

developed from a simple experiment, where it was found that observers like to judge 

surfaces when viewed at a 60-degree angle between the light position and the surface 

normal. In addition, a wobbling motion around this angle was also identified from the 

observers’ judgements.    

 

In the next chapter, the experimental setup will be discussed where the environment, 

tools and calibrations will be described. 
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CHAPTER 5  

EXPERIMENTAL SETUP 

 

 

Previously the experimental method and stimuli construction were discussed; in this 

chapter I will discuss the experimental constraint, tools and calibration methods for the 

experiments to be used in following chapters. The discussion that will take place in this 

chapter is necessary as any un-calibrated tool or external distracters can cause 

unsuspected errors in the psychophysical experiments. The goal was to design and build 

a controlled environment free of all possible distractions to obtain the most reliable 

observations; also all equipment was calibrated and set appropriately for each 

experiment. 

 

This chapter is divided into four sections, where Section 5.1 discusses the design and 

construction of the controlled environment, Section 5.2 argues the use of the tools for 

the experimental setup, Section 5.3 discussed the monitor calibration methods. Section 

5.4 presents a summary of the chapter as a whole. 

 

5.1 Constrain environment  

First, the observers’ visual acuity was tested for 20/20 vision (maximum resolution of 

30 cycles per degree), a well lit Snellen chart was used to test each subject. Although 

this chart is well known for its designs flaws (Thomson, 2005) specially when observers 

read part of the characters in a line, but in the experiment each volunteer accurately read 

all characters from the 20/20 line, therefore the Snellen charts were still used to measure 

visual acuity.   

 

Knowing that every subject could observe up to 30 cycles per degree allows calculating 

the distance from the subjects’ eyes to the screen. To follow the ‘natural approach’, the 

distance would have to be as if the observer was naturally holding the surface, this 

arms’ length distance is around 30 cm for a flexed arm or around 60 cm for a stretched 

one (own measurements). To achieve this distance with a resolution of 30 cycles per 
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degree, the display would need to have a minimum resolution of 300 pixels per inch 

(also known as dpi – dots per inch) at 60cm or 600 pixels per inch at 30 cm. However, 

these resolutions are not currently available for commercial monitors therefore the 

distance between the subject and the display was increased to an unnatural distance but 

at this distance the subjects were able to perceive the full range of visual frequencies  

 

As a result, a monitor with high resolution but small screen size was used to minimize 

the distance of the observer to the display. As later described in section 5.2 a 20-inch 

monitor with a UGA resolution (1200x1600) was chosen, this display has a pixel size of 

0.255mm (100 dpi). To display a maximum resolution of 30 cycles per degree the 

observer was positioned at 87.74 cm away from the display, the observer’s head was 

fixed at this distance for all the experiments using a chin rest. 

 

The surface width and length was chosen so it would include displaying frequencies up 

to the biggest frequency range of 0.11 cpd as described by Campbell and Robson 

(1968). Therefore, surfaces had a maximum resolution of 512 cycles per image width 

and a size of 13.056cm as so to display frequencies with a minimum resolution of 0.1 

cpd and a maximum resolution of 30 cycles per degree. 

 

 
 

Figure 5-1: Illustration of the experimental setup. 
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The surfaces’ rendering had correct perspective (surface displayed at 87.7 cm), also the 

surfaces had a maximum luminance of 100 cd/m2 including compensating for the 

ambient light of the room. The room had a normal indirect daylight to avoid alienating 

observers and avoid observers’ contrast perception being adjusted throughout the 

experiment length (as normally happens when a person enters a dark cinema).  

 

A short summary of the experimental setup is illustrated in Figure 5-1. In the next 

section a discussion about the chosen tool will follow. 

 

5.2 Tools 

The tools section is divided in three parts: displays, software and hardware. These 

groups were chosen only to facilitate the organization of this section. 

 

5.2.1 Displays 

The representations (renderings) of the stimuli must be as close as possible to the actual 

real sample to avoid, or at least reduce, the insertion of errors in the observations. If no 

precautions are taken then the errors will later affect the calculations of the perceptual 

model; for that reason, this section will discuss the latest display technology for the 

experiments.  

 

There are many technologies available for displaying images; these include and are not 

limited to CRTs, LCDs/TFTs, projectors, DLPs, etc. Although it is possible to build the 

experiments using any of these technologies only CRTs and LCDs/TFTs will be 

discussed here, as these two are the most viable solutions and they offer the best 

performance in terms of image quality and colour reproduction. 

 

For many years CRTs have been the facto display technology for psychophysical 

experimentation, CRT technologies are very mature and they have become common 

tools in laboratories where they are systematically used,  errors and calibrations 

procedures are also well documented for CRTs. However, for our experiments flat panel 



  

 
48 

LCDs/TFTs displays are used; the main reasons for choosing flat panels technologies 

instead of CRTs are: 

1. The spatial modulation transfer function (MTF) of flat panel display is superior 

to the MTF of CRTs. As reported in monitor calibration studies (Blume, Steven, 

Ho, Stevens, Abileah, Robinson, Roehrig, Fan, Chawla and Ghandi, 2003) the 

maximum MTF for a flat panel display is around 0.90 whilst for any CRT this 

figure varies dramatically from 0.07 to around 0.50 depending on the display 

manufacturer. This is the main reason flat panels were chosen instead of CRTs, 

is that CRTs would have undermined high frequencies in the surface stimuli 

therefore pre-biasing the observers’ judgements and consequentially 

miscalculating any frequency-weighted model. 

2. The gamma correction in flat panels has been known for being arduous to 

achieve, but with modern hardware spectrometers (see Section 5.2.3) and better 

calibration software, this is no longer the case. At the same time modern flat 

panel displays’ look up tables have more resolution (8-bits, 10bits or 12bits per 

colour) making the task of gamma calibration more accurate and less time-

consuming. 

3. The luminance uniformity was fixed using a related method to Blume et al and 

the uniformity of the luminance across the screen in the flat panel displays was 

found to be better than the one of CRTs. 

 

CRT Flat Panel 
Corrections must be done to obtain accurate 

geometry but errors are still introduced 

The geometry is perfect as the array of pixels in 

perfectly aligned 

Not uniform sharpness across the screen Sharpness is uniform across the screen 

Good contrast ratio 
Contrast ratios are not as good as CRTs currently but 

these can be improved in controlled environments 

Perfect black is achievable Lowest black is around 1cd/m2  

Reflections can be reduced using a dark room Reflections can be reduce too with a dark room 

Contrast ratio is independent of the viewing 

angle 

Contrast changes with view angle but this is not 

crucial as observers’ view is fixed and in a frontal 

planar view 

 
Table 5-1: Comparing CRTs and flat panels displays. 
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Other important factors when comparing CRTs with flat panel displays are described in 

Table 5-1. All these extra features in flat panels add a strong support for using this 

instead of CRTs for the experiments. 

 

The monitor chosen for the experiments was the NEC MultiSync LCD (LCD2090UXi), 

this has an A-TW-IPS (in-plane switching) panel manufacture, which offers more 

improvements in comparison to normal LCDs like improved viewing angle, better 

colour reproduction at the cost of speed, 10-bit look up tables, more natural whites, 

increased gamut, increased contrast ratio and support for true 8-bit colour without 

dithering methods.  

 

Specifications NEC MultiSync LCD2090UXi 
Panel A-TW-IPS TFT 

Screen size 51.0 cm (20.1 inches) 

Input DVI-D 

Response time 8 ms (gray to gray) 

Pixel pitch  0.255 

Viewing angle 178 degrees horizontal / 178 degrees vertical 

Contrast ratio 700:1 

Brightness 280cd/m2 

Frequency  85 Hz 

Resolution 1600 x 1200 pixels 

  
Table 5-2: Table of the NEC monitor specifications. 

 

Due to the panel manufacture, this NEC monitor is perfectly suited for the 

psychophysical experiments, as this fixes most of the deficiencies of LCD panel like 

contrast, view angle and colour reproduction. In Section 5.3, it is demonstrated how the 

monitors were calibrated for the experiments. 

 

5.2.2 Software 

For constructing the stimuli Matlab (www.mathworks.com) was used; the code of the 

program can be found in the Appendix 4. Matlab was also used to optimize the model 

for perceived roughness as described in Chapters 7, 8 and 9.   
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For displaying the surfaces, OpenGL 2.0 (www.opengl.com) was used to render the 

surfaces as described in Chapter 4. The interface was programmed in C++ to add speed, 

the Microsoft .NET framework 2.0 (msdn.microsoft.com/netframework) was used to 

parse external strings and XML models and finally the DEVIL image library 

(openil.sourceforge.net) was used to interface the height maps from Matlab to the 

rendering program. 

 

5.2.3  Hardware 

To restrict the head movement from the observers an UHCOTECH Headspot was used, 

this is a general-purpose observer-positioning device that attaches to any desk. It can be 

height adjusted depending on the viewer; it is made of aluminium alloy and finished in 

“optical” black. 

 

For the interface between the observer and the program a standard keyboard was used, 

where only the space bar was used to register when the surfaces matched in roughness, 

as for the adjustment of the surface parameters (up and down) (or the movement of the 

ArcBall) a standard optical mouse was used. 

 

To render the surfaces two NVIDIA 7900 cards were used, connected to a dual core 

AMD X2 3500+ machine with enough ram. The final rendering speed was 15 frames 

per second for the experiments with adjustable surfaces and 24 frames for the 

experiments with fixed parameters. 

 

Finally, to calibrate the monitors a Gretag-Macbeth Eye-One Pro spectrometer and a 

Cannon 350D D-SLR camera were used. The calibration methods are further described 

in the next section.     

 

5.3 LCD Monitor calibration  

The monitors need to be calibrated to avoid errors in the observations as described by 

Roehrig, Chawla, Krupinski, Fan and Gandhi (2004). The monitors were calibrated to 
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display a linear gamma with a white balance similar to the sun colour (chromaticities set 

to x=0.3233 and y=0.3326) (5750 Kelvin) and a luminance of 100cd/cm2. 

 

As seen in Figure 5-2, the gamma differs greatly from an un-calibrated display (left 

one) to a one that has been calibrated (right one). An Eye-One Pro spectrometer was 

used to calibrate the gamma and colour, the resulting errors in calibration are shown in 

Table 5-3. 

 

 

 
Figure 5-2: On the left, an un-calibrated linear gamma and on the right a calibrated one. 

 
 Average Error Maximum Error 

Monitor 1 Red 1.09% 2.35% 

Monitor 1 Green 1.29% 2.74% 

Monitor 1 Blue 1.12% 2.35% 

Monitor 2 Red 0.30% 0.78% 

Monitor 2 Green 0.54% 1.37% 

Monitor 2 Blue 0.24% 0.78% 
 

Table 5-3: A compilation of all the error when calibrating the gamma in percentage.  

   

To calibrate the luminance across the screen a digital SLR camera was used to take 

pictures of the screen as described by Blume et al (2003); later these pictures were 

transformed to compensate for the display variations, to apply the compensation to the 
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screen luminance,  the renderings were altered per-pixel using a soften version of the 

compensation images. Figure 5-3 shows an image of the screen variations in luminance 

before being calibrated and Table 5-4 describes the errors in the display. 

 

 

 
Figure 5-3: Luminance across the screen from an un-calibrated display. 

 
 

Monitor 
Luminance 

cd/cm2 

Border 

Screen 

Border 

Texture 
Centre 

Border 

Texture 
Border Screen 

One 100 1.71 0.40 0.03 0.07 1.13 

 75 1.08 0.12 0.06 0.13 0.16 

 50 0.97 0.40 0.00 0.13 0.07 

 25 0.13 0.32 0.08 0.27 0.19 

Two 100 1.47 0.18 0.03 0.02 1.15 

 75 1.02 0.06 0.10 0.18 0.73 

 50 0.67 0.13 0.01 0.16 0.61 

 25 0.11 0.13 0.03 0.11 0.40 
 

Table 5-4: A compilation of all the error when calibrating the gamma in percentage.  

 
The maximum total variation across luminance and gamma across the surfaces in 

monitor one was 5% and 3% for monitor two, which shows that these methods for 

monitor calibration of LCDs produce excellent calibrations. 
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5.4 Summary and Discussion 

In this chapter, the display technologies were described and it was argued that LCDs are 

the best choice for displays for the experiments. In addition, the tools were described 

and the method of calibration was also explained, including the final errors (maximum 

5% error) for the calibration. In the next section, perceived roughness in 1/Fβ noise 

surfaces will be studied.  
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CHAPTER 6  

ROUGHNESS IN 1/FΒ SURFACES 

 

 

The main objective of this thesis is to develop a measurement model for perceived 

roughness of 1/Fβ noise surfaces. These surfaces were chosen because they look natural, 

are isotropic, and are fully described by three parameters (σ, β and θ). This chapter’s 

aim is to carry out a first investigation into the way in which these parameters affect 

perceived roughness. Thus its goals are: 

1. to discover whether or not each of these parameters independently affects 

perceived roughness, and 

2. to investigate how the parameters that do affect roughness interact with each 

other. 

 

The work is organised as follows: the independent investigations of σ, β and θ are 

described in Sections 6.1, 6.2 and 6.3 respectively, while Section 6.4 reports on the 

combined effect of varying both σ and β. 

 

6.1 The effect of varying RMS roughness (σ) on perceived roughness 

As discussed in chapter two, the classical roughness definition is root mean square 

roughness (RMS or σ). By observation, one can discern that changes in σ do affect 

perceived roughness (e.g. Figure 6-1). This relationship is investigated further here. 

 
RMS roughness affects several cues that could be used to estimate surface 

characteristics, for example the height profile, shadows produced by the peaks, 

occlusions from neighbouring slopes, global luminance, shading of the surface, etc. To 

the author’s knowledge, no single cue has been discovered which correlates with 

perceived roughness. However, Ho, Maloney and Landy (2007) (2008) proposed a 

model of perceived roughness comprising a linear combination of quantifiable visual 

cues.  
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In contrast, we directly investigate the influence that measurable surface parameters 

have on perceived roughness, and in this section, we investigate the affect of varying σ 

while holding β and θ constant (as shown in Figure 6-1 below). 

 

 

 
Figure 6-1: Demonstrates three surfaces with similar β {1.8} and θ {23} but different σ {0.6, 1.0 and 1.2}. 

 

A σ of zero produces planar (completely smooth) surfaces. We argue therefore that 

human observers will perceive surfaces with larger values of σ as being perceptually 

rougher.  

 

To test this hypothesis a simple experiment was designed in which three non-naïve 

observers were asked to compare three surfaces and to order them according to their 

perceived roughness. Each surface had a different σ but the values β and θ were kept 

constant. All ten possible combinations of three surfaces chosen from five samples {σ = 

0.6, 0.8, 1.0, 1.2 and 1.4 cm} were presented. β was kept at 1.8 and θ at a constant 

random seed {25}. The experiment was repeated for a β of 2.2 and a θ of 30. In total, 

each observer ordered twenty-five triples (including five training trials). Appendix 6-A 

shows the order in which the surfaces were presented and the detail information of the 

characteristics of the stimuli in each trial.  

 

There were no time restrictions placed on the observers and they were able to 

manipulate the orientation of the sample textures while the light position was kept 

constant as explained in Chapter 4. This low number of observers and the reduced 

control over external variables were appropriate for this pilot experiment.  
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Category scaling was used to determine the perceived rank order of the roughness of 

the surfaces. The scale of the magnitude of the perceptual roughness was not 

investigated at this stage.    

 

The procedure used to rank the surfaces was as follows. The surface of any triple that 

was perceived to be the most rough was assigned +1; the smoothest surface was 

assigned -1 while the intermediate was assigned the value of 0. All values assigned to a 

surface where totalled and an offset of 10 added (purely for display purposes). The 

resulting bar chart is shown in Figure 6-2. It is important to note that the numbers on 

the perceptual ranking axis indicate purely an ordinal relationship.  For full details of 

the results, see Appendix 6-B. 

 

 
 

Figure 6-2: Perceived roughness increases with σ. 

 
 
The results of this experiment confirm that perceived roughness does increase with the 

increasing σ and it also established a range of values of this parameter over which 

observers make consistent roughness judgements. Values of σ outside this range yield 

surfaces that do not appear natural, and are either almost flat or extremely 

“mountainous”. In the next section, we investigate the effect of changes in the 

parameter β on roughness judgements. 
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6.2 The effect of varying magnitude roll-off factor (β) on perceived roughness 

Recall from Chapter 4 that varying β changes the weight (variance) of different 

frequencies within a surface’s height spectrum. In particular, for a fixed RMS 

roughness, reducing β increases the variance of the higher frequencies at the expense of 

the lower frequencies. Furthermore, it is well known that increasing the power of higher 

frequencies increases the perceived roughness of the surface when sensed using touch 

(Meftah, Belingard and Chapman, 2000) (Yoshida, 2001) (Smith, 2002) (Gibson and 

Craig, 2002).  Consequently, we formulate the following hypothesis for this section: if β 

is related to perceived roughness, then observers will perceive surfaces with smaller β 

as being rougher. 

 

The methodology used for this experiment is similar to the one used in the previous 

section. Category scaling was used to rank different surfaces, however, this time β was 

varied while σ and θ were held constant at 0.8 cm and 20 respectively (see Figure 6-3).  

The three observers from the first experiment were asked to order all combinations of 

three from six surfaces {β = 1.7, 1.8, 1.9, 2.0, 2.1 and 2.2}. A second trial was 

performed using a σ of 1.2 cm and θ of 35. In total, each observer ordered forty-five 

triples (which included five training triples, see Appendix 6-C for detail description of 

the stimuli and trials). Otherwise, the conditions were the same as for the previous 

experiment. 

 

 

 
Figure 6-3: Demonstrates three surfaces with similar σ {1.2} and θ {23} but different β {1.8, 2.0 and 2.2}. 

 

Ranks were assigned to surfaces as before and the results are shown in Figure 6-4. This 

shows that there is a clear relationship between β and perceived roughness, and 

validates the hypothesis that observers perceive surfaces with higher β values as being 
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smoother and surfaces with lower β values as being rougher (the actual observations are 

detailed in Appendix 6-D).  

 
 

Figure 6-4: Perceived roughness decreases with magnitude roll-off factor (β). 

 

6.3 The effect of random phase on perceived roughness 

The surfaces used in the experiments were constructed using random values for their 

phase magnitudes as described in Chapter 4. Although it is known that the random 

phases produce surfaces with similar appearance (Russ, 1994), it is not known if the 

perceived roughness is affected by the seed of the phase (see Figure 6-5).  

 

 

 

Figure 6-5: Demonstrating four surface the same σ {1.0 cm} and β {2.0} values but different random phase 
seed {5, 25, 42 and 62}.  
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Phase controls the relative positions of the sinusoidal basis functions that when added 

together produce an instance of a surface. It does not affect the variance of the surface 

or the shape of the power spectrum. The most obvious assumption to make therefore is 

that the particular assignment of random phase does not affect perceived roughness. 

Thus, the hypothesis to be tested here is if the seed of θ is not related to perceived 

roughness, then observers will perceive surfaces with different seeds of θ, but having 

the same σ and β, as having similar roughness. 

 

To validate this hypothesis a new experiment was constructed. Ten naïve observers 

were asked to match the roughness of pairs of surfaces using the method of adjustment 

(previously explained in Chapter 4). Each pair comprised a “reference surface” and an 

“adjustable surface” generated using different seeds but with the same value of β {2.0}. 

The RMS roughness of the reference surface was chosen from σ = 0.4, 0.6, 0.8, 1.0, and 

1.2 while that of the adjustable surface was initialised to a random σ.   Both surfaces 

where presented simultaneously to the observers, during which time the orientation of 

both surfaces followed a predetermined motion (described in Chapter 5). The observers 

were asked to adjust the RMS roughness of the adjustable surface until its perceived 

roughness matched that of the reference surface (this concept is depicted in Figure 6-6).  

Details of each trial and the characteristic of the stimuli are listed in Appendix 6-E. 

 

 
Figure 6-6: Demonstration of the pair sets for the phase relationship experiment. 
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By obtaining the median of the observations (last column of Appendix 6-F) it is possible 

to obtain ten ‘observations’ for each of the five σ values {0.4, 0.6, 0.8, 1.0, and 1.2cm}. 

Furthermore, from the results it is possible to obtain the variation in perceived 

roughness for the five pairs of random θ for each of the five σref values. The scatter plot 

shown in Figure 6-7 compiles all the values from the ten observers, it also illustrates the 

spread in observations. The actual observation values are given in Appendix 6-F. 

 

 
 

Figure 6-7: Values of RMS roughness of adjustable surfaces set by individual observers when matching five 
different fixed surface RMS roughnesses (horizontal axis) and with five different combinations of random 

phase (symbols shown in key). 

 

Figure 6-7 shows that the seed of the phase (θ) does not significantly affect the 

perceived roughness of a surface. The largest discrepancy occurs when the random 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

O
bs

er
ve

rs
 a

dj
us

ta
bl

e 
su

rf
ac

e 
R

M
S 

R
ou

gh
ne

ss
 (c

m
)

Fixed surface RMS Roughness (cm)

Phase Comp 1
Phase Comp 2
Phase Comp 3
Phase Comp 4
Phase Comp 5
Ideal
Median
Ideal
Median Pol Fitting



  

 
61 

phase generation significantly changes the relative position of the lowest frequency 

Fourier components (1 cycle per image width) of the two surfaces. This substantially 

changes the average viewing angle of surface detail (see the last two surfaces of Figure 

6-5).  

 

Despite this, the overall results, shown in Figure 6-5, support the hypothesis that the 

seed used for random generation of the phase spectrum does not change perceived 

roughness. 

 

6.4 Contours of constant perceived roughness in (β, σ) space 

The previous sections have shown that the perceived roughness of a 1/Fβ noise surface 

is not affected by variation of the seed used to randomise its phase (θ) but is affected by 

independent variation of RMS roughness (σ) or roll-off factor (β). Hence, the goal of 

this section is to investigate simultaneous variation of σ and β. This is done by 

determining lines (contours) of constant perceived roughness in the (β, σ) space. 

 

The experimental procedure followed is described below and illustrated in Figure 6-8. 

The procedure is: 

1. generate a reference surface with a predefined RMS roughness (σref), and a roll-

off factor βref  = 2.0; 

2. generate an adjustable surface with a different roll-off factor (βadj) and a random 

RMS roughness (σadj); 

3. present both surfaces to the observer during which time the orientations of both 

surfaces follow a predefined motion (described in Chapter 4); 

4. ask observers to adjust the RMS roughness (σadj) of the adjustable surface until 

its perceived roughness matches that of the reference surface; 

5. choose a new value of βadj for the adjustable surface and repeat steps 1-4 for the 

set of possible βadj; 

6. choose a new value of σref for the reference surface and repeat steps 1-5 for the 

set of σref. 
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Figure 6-8: Demonstration of the method used to obtain the contour lines. 

 

A pilot study was performed initially with five non-naïve observers in order to establish 

reasonable bounds for the (β, σ) space. From this experiment, it was noted that surfaces 

with roll-off factors between 1.7 and 2.4 appeared the most realistic and natural, and 

that ones outside these values were judged by observers either as being too synthetic or 

as impossible to match with the reference surfaces. Similarly, RMS roughness values 

greater than 3.0 cm where described as unrealistic and produced large variations in 

observers (this is likely to be because displacement mapping does not tessellate the 

sides of the slopes with high magnitudes and low frequencies as explained in Chapter 

4). Figure 6-9 shows the errors produced by the pilot experiment when extreme values 

of β were used. 

 

Thus the sampling chosen for the (β,σ) space used for the full version of this experiment 

(which used ten naïve observers) was: 

 seven values for the roll-off factor (βadj  = 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3); and  

 five RMS roughness values (σref  = 0.4, 0.6, 0.8, 1.0, 1.2 cm). 
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Figure 6-9: Errors from the pilot experiment to test the limits of the actual experiment. 

 
In total, each observer matched thirty-five surface pairs (seven values of βadj times five 

values of σref) but to add robustness to the results, each observer repeated the experiment 

two more times with different random phase seed values. In total one hundred and five 

observations were collected per observer (excluding five practice observations). The 

complete description of the experiment is given in Appendix 6-G.  

 

 
Figure 6-10: Individual results for surface matches in (β-σ) space. 
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The detailed results are provided in Appendix 6-H and shown in Figure 6-10, where 

there is a statistical significance between β and σ (p < 0.00001 for both samples 

calculated using analysis of variance). These data theoretically contain only five unique 

values of perceived roughness (as observers matched all surfaces to one of five 

reference values of (βref, σref)). Thus, we should be able to draw five lines of constant 

perceived roughness (iso-roughness lines) through Figure 6-10 that will account for all 

the data.  

 

 
 

Figure 6-11: Roughness contour lines for the (β, σ) space. Error bars are standard errors of the mean RMS 
roughness values set over all trials at each combination of values. 

 

Figure 6-11 shows these iso-roughness lines derived by minimising the least-squares 

error of a quadratic fit to each of the five data sets (statistical significance and error 

values are detailed in Appendix 6-I and Appendix 6-J). Notice that none of these lines 

crosses each other and that none of the error bars intersects each other too.  

 
By changing the scale of the RMS roughness axis to use log(σ) it is possible to simplify 

the presentation of these data further. Figure 6-12 shows the results of fitting straight 

lines in this new axis space. It clearly indicates that the contours of constant perceived 

roughness follow a linear relationship between log(σ) and β.  
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Figure 6-12: Roughness contour lines in (β, log σ) space. 

 

 
 

Figure 6-13: Slopes of the iso-roughness lines obtained from individual observers. 

 
Figure 6-13 shows the slopes of the five iso-roughness lines for each of the individual 

observers. Note that there is relatively little variation in slopes within observers, 

implying that individuals’ iso-roughness lines almost never cross in (β, log σ) space, but 
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there is greater variation between observers. This implies that people vary in the relative 

weights that they give to the two parameters when they make matches between the 

perceived roughnesses of surfaces. (Samples of the largest and smallest slope variation 

are shown in Appendix 6-K and Appendix 6-L respectively, and the actual slope values 

are detailed in Appendix 6-J). The author did not found any relationship between the 

obtained data and the variation in slope between observers therefore this is still open 

discussion and further experimentation is needed. 

 

6.5 Summary and Discussion 

From the experiments described above it is clear that of the three parameters (σ, β and 

random phase seed θ) used to specify 1/Fβ noise surfaces only σ and β affect perceived 

roughness. That is:   

i) increasing RMS roughness (σ) increases perceived roughness;  

ii) decreasing roll-off factor (β) increases perceived roughness; and 

iii) changing the random phase seed (θ) does not affect perceived roughness. 

 

Furthermore, the last experiment has clearly shown that there is a linear relationship 

between log σ and β for lines of constant perceived roughness for 1/Fβ noise surfaces. 

 

Although, the above results from the experiments show a clear relationship between the 

surfaces’ characteristic and perceived roughness, some factors are still not modelled like 

prior knowledge, expertise or binocular disparity. We will assume these factors do not 

contribute or do it insignificantly to the perception in surfaces as observers were chosen 

to represent a well-balanced population.  

   

Given the above results, it is now possible to propose how a measurement model for 

perceived roughness might be developed. From (iii) above it is clear that phase spectra 

have no effect on perceived roughness. Thus, the model can be based on the surface’s 

power (or magnitude) spectrum, and this will be the focus of the next chapter. 
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CHAPTER 7  

A MODEL BASED ON THE HUMAN VISION 

 

 

The goal of this chapter is to develop a model (or estimator) of perceived roughness for 

1/Fβ noise surfaces that is consistent with the data obtained in the preceding chapter. 

This model should therefore: 

1. be able to predict the contours of constant perceived roughness reported in 

Section 6.4 and  

2. be independent of a surface’s phase spectrum. 

 

The second requirement dictates that we use only the surfaces’ power (or magnitude) 

spectra. These data are commonly used in computer vision for classification and 

segmentation of image texture. The algorithms were originally inspired by the popular 

frequency channel models of early processing in the human visual cortex, and typically 

follow an FRF (filter-rectify-filter) structure. Hence, this chapter will assess the 

suitability of a number of different FRF models as estimators of perceived roughness. 

 

The chapter is organised in five parts. The first section explains the reasoning behind 

the proposed models. Section 7.2 describes the methodology used for fitting these 

models to the data obtained in the preceding chapter. In Section 7.3, two simple models 

are investigated to determine how consistent they are with observers’ data. In Section 

7.4, a model with a more plausible basis in human vision is fitted to the data. Finally, 

the results are discussed and a short explanation is given as to why further experiments 

are necessary.  

 

7.1 A plausible measurement model  

The form of our model is based on the FRF structure that is often used for modelling 

visual processes. This also known as the back pocket model in vision science because 

Landy et al argue that “it has become the default model that researchers in the field 

routinely ‘pull from their back pocket’ to attempt to make sense of texture segregation 
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results” (Landy and Oruc, 2002). In this framework, the first filter is usually a band pass 

filter (e.g. a Gabor) which is both orientation and frequency tuned (Landy and Bergen, 

1991) (Graham, Sutter and Venkatesan, 1993). However, there is not so much 

agreement as to the form of the second filter. Some vision scientists argue that it is most 

likely to be another (lower frequency) band pass filter (Landy and Oruc, 2002) (Dalkin, 

Willians and Hess, 1999), whilst computer vision researchers often implement it simply 

as a pooling (or averaging) filter (Randen and Husoy, 1999) (Bovik, Clark and Geisler, 

1990). In the latter case, when we define R to be a squaring function (x2) the result is a 

local variance estimator (see Figure 7-1). 

 

 

 
Figure 7-1: The FRF (filter-rectify-filter) framework. 

 

Normally, FRF models are applied directly to image data. Here, however, the algorithm 

is used in a different context from image texture segregation or classification. As we 

wish the estimator to be independent of illumination conditions, we apply it directly to 

the height data, as it is known that the slant and tilt of the illumination affects the 

statistics of images as described by Chantler (1995).  Thus in the proposed model, the 

surface height description s(x,y) is directly convolved with the first filter  f1(x, y) and the 

result passed to the combined R F2 stage which performs the variance (Var) estimation 

as defined in Equation 7.1. 

 

௣௥ߦ ൌ Varሺ ଵ݂ሺݔ, ሻݕ כ ,ݔሺݏ ሻሻ (7.1)ݕ

 

Rectifying Filtering Filtering 
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Assuming that the signal is zero-mean  then Equation 7.1 can be expressed by a simple 

summation (Equation 7.2) and Parseval’s theorem (Oppenheim, Schafer and Buck, 

1999) can then be used to transform the expression into the discrete Fourier transform 

(DFT) domain  (Equation 7.3) 

 

 

௣௥ߦ  ൌ Var൫ ଵ݂ሺݔ, ሻݕ כ ,ݔሺݏ ሻ൯ݕ ൌ ෍ ሾ ଵ݂ሺݔ, ሻݕ כ ,ݔሺݏ ሻሿଶݕ
௫,௬

 (7.2)

 

 

 

௣௥ߦ ൌ  ෍ ሾ ଵ݂ሺݔ, ሻݕ כ ,ݔሺݏ ሻሿଶݕ
௫,௬

ൌ ෍ ,ݑଵሺܨ ሻଶݒ · ܵሺݑ, ሻଶݒ
௨,௩

 (7.3)

 

 

 

F1(u, v) is the transfer function of the first filter, S(u, v) is the DFT of the surface height 

function and (u, v) are DFT Cartesian frequency coordinates. As we have previously 

defined surface height of the 1/Fβ noise surfaces as a continuous function of polar 

coordinates we will express (Equation 7.3) in the continuous Fourier polar domain and 

integrate over the range of frequencies detectable by human vision (Equation 7.4).  

 

 

௣௥ఏߦ ൌ  ඵ ଵ൫ܨ ௙݂, ௙൯ߠ ଶ. ܵ൫ ௙݂, ௙൯ଶߠ d ௙݂ dߠ௙

௙೎

௙೛

 (7.4)

 

 

Where ff is the cyclic frequency, θf is the angle of the basis function, fp is the starting 

frequency of 0.11 cpd and fc is the cut-off frequency of 30 cpd. This formula can be 

defined in cycles per degree because the experiments have a fixed viewing distance as 

previously described in Chapter 5. 

  

The next section will describe the methodology used to optimise F1, and its parameters, 

to the iso-roughness data presented in the previous chapter.  



  

 
70 

7.2 Optimization of F1 

There are a variety of choices for the form of F1 and the values of its parameters. We 

therefore require an error measure (objective function) that will allow us to optimise 

these. In the previous chapter we established five iso-roughness lines in the (β, σ) space 

(Figure 6-11). Seven surfaces, which observers have perceived to have the same 

roughness, are associated with each of these lines. If an estimator for ξpr fits these data 

well, then its output will have the same value for all surfaces associated with a particular 

iso-roughness line. Conversely, if it does not fit the data well, then these values will 

vary. Thus, one could use the standard deviation of the values of ξpr obtained for the 

surfaces associated with one line as the objective function. However, the different 

candidate F1 filters may produce quite different values for their estimates of ξpr and so 

we use the normalised standard deviation of the error function over each line (Equation 

7.5).  

 

ε ൌ
ට1

n · ∑ ቀߦ௣௥୧
െ ௣௥തതതതቁߦ

ଶ
୬
୧ୀଵ

1
n · ∑ ቀߦ௣௥୧

ቁ୬
୧ୀଵ

 (7.5)

 

Note that the values of ξpr used in evaluating the objective function ε are the medians of 

the values obtained from the ten observers in the experiment described in Chapter 6.  

In order to obtain an overall error value (εt) the line errors (ε) for all lines are simply 

summed (Equation 7.6). 

 

௧ߝ ൌ ෍ ௜ߝ

୪୧୬ୣୱ

୧ୀଵ

 (7.6)

 

 

As we assume that F1 is circularly symmetric and as the stimuli are isotropic, Equation 

7.7 can be further simplified by performing the calculation over the radial variable fr, 

i.e. we omit the angular variable (θf). This result in Equation 7.7 below (please notice 

that it is assumed that the factor of (2πf) is already multiplied to the equation, as this is 

necessary when a circular symmetry was assumed): 
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௣௥ߦ ൌ න ଵሺܨ ௙݂ሻଶ . ܵሺ ௙݂ሻଶ d ௙݂

௙೎

௙೛

 (7.7)

 

 

Thus, Equation 7.7 provides the objective function that must be minimised in order to 

optimise the fit of F1 to the psychophysical data. We found no general way of solving 

Equation 7.7 and therefore evaluate it numerically using Simpson’s rule (Matlab 

implementation). 

 

In the next subsection, different shapes of F1 will be investigated and their parameters 

optimised using Equation 7.6.  

7.3 Fitting the models to the data  

The criteria used to select candidate models for F1 are that they should be: 

1. of a simple form; 

2. parsimonious (i.e. have a low number of parameters); and 

3. biologically plausible. 

 

The simplest bandpass filter is a box filter. While this satisfies criteria one and two, it is 

arguable whether it meets criterion three, as it requires computation of a global function.  

However, as it is very easy to calculate we will start with it, and then go on to consider 

power and gaussian filters. 

 

7.3.1 The box filter 

The box filter’s roughness estimator is easily implemented by setting the integration 

limits in Equation 7.7 to the desired cut-off frequencies of the filter.  The result is 

Equation 7.8 (fp is the start frequency, fc is the cut out frequency and the gain K is set to 

one). Figure 7-2 shows how the filter parameters affect its shape.    

 

௣௥ߦ ൌ න ܭ · ܵ൫ ௙݂൯ଶ d ௙݂

௙೎

௙೛

 (7.8)
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Figure 7-2:  Effects of varying the parameters Fp and Fc of the box filter 

 

 

 

 
Figure 7-3: Objective function εt as a function of the box filter parameters, dashed lines indicate where the 

parameters fp and fp intersect or are too small to form a band pass filter (< 1 cycle/degree). 
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Figure 7-3 contains a contour plot of the objective function (εt) as a function of the two 

cut-off frequencies of the box-filter. The diamond shape indicates the optimum value of 

the parameters: 

• start frequency (fp) = 1.53 cycles per degree, and  

• cut off frequency (fc) = 4.58 cycles per degree.  

 

Note that the error is sensitive to changes in the low frequency cut off but that the same 

is not the case for the high frequency cut off.  

 

 
 

Figure 7-4: Iso-roughness lines predicted by the optimised box filter model, compared to the experimental 
data. 

 

7.3.2 The power function filter  

In this function, described in Equation 7-9, the weighting of frequencies across the 

range from fp to fc is not constant, as in the box model, but varies according to a power 

law. The high cut off frequency fc is fixed at 30 cycles per degree, while the low cut off 

frequency fp and the power of the weighting function p vary, as illustrated in Figure 7-5. 
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௣௥ߦ ൌ න ሺ ௙݂ െ ௣݂ሻ௣ . ܵ൫ ௙݂൯ d ௙݂

௙೎

௙೛

 (7.9)

 

 

  

 
Figure 7-5: Effects of varying the parameters p and Fc of the power function filter. 

 

 
Figure 7-6: Objective function εt as a function of the power filter parameters. 
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The optimized parameters of the power function filter when minimizing the error εt are a 

p value of 0.24 and a low cut off frequency fp of 1.06 cycles per degree (see Figure 7-6) 

With these parameters, the fit of the model to the experimental data is shown in Figure 

7-7.  

 

  

 
Figure 7-7: Iso-roughness lines predicted by the optimised power function filter, compared to the experimental 

data. 

 

 
Table 7-1 summarises the formulas and the optimized values for each of the two 

functions, and shows that the optimized power filter achieves a lower error (εt = 0.0187) 

in matching the experimental data than does the optimized box filter (εt = 0.0220). 

Figure 7-8 plots each of the filters with their optimized parameters, together with the 

contrast sensitivity function that describes the sensitivity of the human vision system to 

spatial frequency (Campbell & G, 1968).  
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Function Filter Function Min Error 
εt 

Optimized 
Parameters 

Box ߦ௣௥ ൌ න ൫ܵ  . ܭ  ௙݂൯  d ௙݂

௙೎

௙೛

 0.0220 

K = 1.00, 

fp =  1.53 cpd, 

fc = 4.58 cpd. 

Power ߦ௣௥ ൌ න  ሺ ௙݂ െ ௣݂ሻ௣  .  Sሺ ௙݂ሻ  d ௙݂

௙೎

௙೛

 0.0187 

p = 0.24, 

fp =  1.06 cpd, 

fc = 30.00 cpd. 

 

Table 7-1: Short summary of all the filters, the minimum error and the optimum parameter values. 

 
 

 
 

Figure 7-8: Plots of all filter functions when optimizing the error.  

 

7.4 A filter based on the human vision system 

The spatial frequency channels in the human visual pathway are characteristically 

described in literature as gaussian-like functions (Wilson, McFarlane and Phillips, 

1983) (see Figure 7-9). A gaussian shape for the filter F1 therefore has greater 
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biological plausibility than the filters considered so far, as well as being a simple form 

of a band pass filter. 

    

 

 
Figure 7-9: Spatial frequency channels approximations re-plotted from Wilson’s data (Wilson, McFarlane, & 

Phillips, 1983) as gaussian functions to make them more parsimonious. 

 

The gaussian function to be tested against the observed data is described in Equation 

7.10, where k replaces the multiplying variables of a normal gaussian with the inverse 

of the maximum of the function; as a result, the gaussian function is normalized 

(maximum of one in the peak of the function). μ and σg are the mean value and the 

standard deviation of the gaussian function, respectively.  

 

௣௥ߦ ൌ න k . e
ି

൫୪୭୥൫௙೑൯ି ୪୭୥ ሺµሻ൯మ

ଶ஢ౝమ . ܵሺ௙ሻ d ௙݂

௙೎

௙೛

 (7.10)

 

Logarithmic values of these parameters are used in the equation to give the gaussian 

function its distinctive shape in the logarithmic frequency domain, and a closer match to 

the shapes of the spatial frequency channels in human vision. The effects of varying the 
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two parameters are illustrated in Figure 7-10. Pilot fittings showed that a normal 

gaussian had a worse fitting than the log gaussian, and so it will not be discussed 

further.  

 

  

 

Figure 7-10: Effects of varying the parameters μ and σg of the Gaussian filter.  

 

 
 

Figure 7-11: Objective function εt as a function of the Gaussian filter parameters. 
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The gaussian function as F1 fits the data with a minimum error εt of 0.0189 when the 

optimum value of μ is 3.87 cpd and of σg is 2.53 (see Figure 7-11). The fit of the iso-

roughness lines predicted by the optimized model to the experimental data is shown in 

Figure 7-12. 

 

 

 

Figure 7-12: Iso-roughness lines predicted by the optimised gaussian filter model, compared to the 
experimental data. 

 
 
A plot of the final optimized gaussian function is shown in Figure 7-13, alongside the 

contrast sensitivity function. Note that the filter falls well inside the CSF and that the 

centre of the filter is close to that of the CSF.   
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Figure 7-13: Final Gaussian Fit. 

 

7.5 Summary and Discussion 

In this chapter, three FRF models of perceived roughness have been developed and 

tested against the experimental results that define the combinations of the surface 

parameters σ and β that give surfaces of equal perceived roughness. Of these, the power 

and gaussian models provide a better fit than does the box model (see Tables 7.1 and 

7.2). Other filter shapes were tested in pilot work, but because of the complexity of 

minimizing more than two parameters, and the unlikelihood of these being natural; 

these further possibilities are not presented. 

 

The optimised gaussian filter does offer two advantages over the power filter in terms 

of its biological plausibility. First, its shape resembles that of the spatial channels that 

have been identified physiologically and psychophysically in the primate visual 

pathway. Second, it falls within the human contrast sensitivity function and so does not 

imply that frequencies outside those detectable by human vision could contribute to the 

perception of roughness. Even so, experimental evidence is still required to decide 

conclusively between the two models. Since the power filter could be considered as 

equivalent to a gaussian with a centre frequency located above 30 cpd, the critical 
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difference between them is in the contribution of high frequencies to roughness 

perception that they imply (compare Figures 7-8 and 7-13).  

 

Function Filter Function 
Min 

Error 
εt 

Optimized 
Parameters 

Box ߦ௣௥ ൌ න ൫ܵ  . ܭ  ௙݂൯  d ௙݂

௙೎

௙೛

 0.0220 
K = 1.00, 

fp =  1.53 cpd, 

fc = 4.58 cpd. 

Power ߦ௣௥ ൌ න  ሺ ௙݂ െ ௣݂ሻ௣  .  Sሺ ௙݂ሻ  d ௙݂

௙೎

௙೛

 0.0187 
p = 0.24, 

fp =  1.06 cpd, 

fc = 30.00 cpd. 

Gaussian ߦ௣௥ ൌ න   k. e
൭ି

൫୪୭୥ ሺ௙೑ሻି୪୭୥ ሺµሻ൯మ

ଶ ሺ஢ౝሻమ ൱
 .  ܵ൫௙೑൯  d ௙݂

௙೎

௙೛

 0.0189 

k = 1 / max, 

µ = 3.87 cpd, 

σg= 2.53 cpd, 

fp =  0.01 cpd, 

fc = 30.00 cpd. 

 
Table 7-2: Summary of all the filter functions and their errors. 

 
 
There are two reasons why the 1/Fβ noise surfaces used in the experiments so far are not 

suitable to test between these two models. One is the decaying shape of the frequency 

spectrum of such a surface, in which the magnitudes of high-end frequencies critical for 

testing between the models are very low relative to those of lower frequencies. As a 

result, the magnitudes of high frequencies cannot be varied sufficiently for tests 

between the models without creating large changes in those of low frequencies, which 

render the surfaces unrealistic. Another reason is the symmetry of the stimuli 

frequencies, making it possible to compensate with lower frequencies by increasing 

their weight and decreasing the weight of the high frequencies, or the other way around, 

therefore making it impossible to determine which is the best fitting filter.  
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Consequently, in the next chapter, a new kind of stimulus will be presented, where it 

will be possible to manipulate the magnitudes of high and low frequencies 

independently. These new stimuli will show which filter provides the best model for 

perceived roughness. 
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CHAPTER 8  

 TESTING THE MODELS USING NARROW-BAND SPECTRA SURFACES 

 

 

The last chapter showed that a gaussian function and a power function fit the F1 filter 

(of the FRF model of roughness perception) best in comparison to other functions, with 

closely similar errors. The gaussian function had a mean of 3.87 cpd and a standard 

deviation of 2.53, whilst the power function had a power factor equal to 0.24 and a 

starting cut-off frequency of 1.06 cpd. It is important to notice that the power function 

can also be thought of as a gaussian function with a mean greater than 30 cycles per 

degree (the limit of acuity for observers with 20/20 vision). However, from only the 

observations in chapter six, it is impossible to discern the best fitting model between the 

gaussian and the power function.  

 

In this chapter, the construction of new stimuli based on spatial frequency channels will 

be described. These new stimuli will be used in a set of experiments that will help to 

discern the best fitting shape for F1 filter. To accomplish this, first the construction of 

the new stimuli will be examined in Section 8.1. In the next (Section 8.2), the mid-range 

frequencies will be explored followed by the high-range frequencies and their 

relationship with perceived roughness. Next in Section 8.3 both functions will be tested 

against the new observations from the previous two sections and the iso-roughness lines 

from chapter six, followed by Section 8.4 which will improve the proposed filter by 

using a function which compromised between shape and parameters. Finishing with a 

short summary and the conclusions from the chapter as a whole (Section 8.5).  

 

8.1  New stimuli based on spatial frequency channels 

As previously described, it was not possible to distinguish the best fitting filter for F1 

between the gaussian and the power function because two difficulties exist when fitting 

a function in the F1 filter for the FRF model for 1/Fβ noise surfaces. These two 

difficulties are produced by the general construction of 1/Fβ noise surfaces, which suffer 

from two unwanted characteristics: 
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a) Symmetric decay. In 1/Fβ noise surfaces magnitude decays symmetrically by the 

inverse of the frequency to the power of beta (1/Fβ). Because also the filters are 

symmetrical, it is possible to compensate for lower frequencies by increasing 

their weight and decreasing the weight of the high frequencies, or the other way 

around, therefore making it impossible to determine which is the best fitting 

filter 

 

b) Small magnitude in the high frequencies. The decaying shape of the frequency 

spectrum of 1/Fβ noise surfaces produces high-range frequencies that are a 

hundred times smaller than the magnitude of lower frequencies. Therefore, it 

reduces the importance of high-range frequencies on the F1 filter and in the 

model as a whole.  

 

Subsequently a new set of stimuli was constructed, which help the modelling of 

perceived roughness by exploring how magnitude in bands of frequencies influences 

perceived roughness. To do this, three main characteristic were required when creating 

these new stimuli, which are: 

1. Natural looking surfaces so an observer will not find difficulty matching 

surfaces; 

2. Isotropic surfaces, as the 1/f noise surfaces are, and  

3. Stimuli that can be tested for roughness at different frequency bands. 

 

Although many different surfaces types were considered, the most suitable one that 

satisfied all of the three characteristics previously described was a surface constructed 

of gaussian frequency bands. This ‘frequency bands surface model’ or ‘narrow-band 

spectra surface model’ produces realistically looking surfaces that are also isotropic and 

the frequency bands’ centre, constructed from a gaussian function, can be chosen at any 

frequency to facilitate experimentation with different frequencies. 

 

To get the most realistic feel to the surfaces and to facilitate the experimentation on this 

surfaces, all the gaussian bands where significantly spaced (10% max overlap), as a 

result only three gaussian frequency bands where used. These three mimic the gaussian 

approximations of the spatial frequency channels as described by Wilson (1983) and 

shown in Figure 8-1. Only the B, D and F channel approximations were used, as they 
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do not overlap significantly. Frequency bands below 0.8 cpd will not be tested to avoid 

puzzling observers between shape and surface texture as it is still unknown the border 

frequency between an object’s shape and its surface’s characteristics(Newman, Klatzky, 

Lederman, & Just, 2005).  

 

 

 
Figure 8-1: Frequency bands used to construct the new stimuli. 

 
 

This gaussian band surface model is described in Formula 8.1 where Sgb is the surface 

in frequency domain, the Fb1, Fb2 and Fb3 values are the magnitudes of the gaussian 

frequency bands respectively. The µb1, µb2 and µb3 variables correspond to the mean of 

the logarithmic gaussian functions and σb is the standard deviation of the bands.  
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Although the centres of the three bands used are the same as the approximations of the 

spatial frequency channels, the standard deviation of each of them was fixed to 1.3. This 

value was chosen to minimise overlap between bands and at the same time use bands 

with similar standard deviations but different centres to facilitate the discovery of how 

frequencies influence perceived roughness. 

  

 

 
Figure 8-2: Demonstration of the band stimuli with and without the base (one to two cycles per stimuli width). 

 
 

When constructing the stimuli only pairs of adjacent bands were used at a given time to 

provide the stimuli with its natural feel (more bands give the stimuli a more natural 

feel), as a result, in the stimuli one band always had a magnitude of zero. In addition, to 

ensure that occlusions were present and enhance the depth perception by shading, a very 

low frequency base (0.11 to 0.23 cpd) was used to give the stimuli its characteristic 

waviness, as demonstrated in Figure 8-2.  

 

The final stimuli were rendered using the same lighting and construction parameters as 

previously described in Chapter 4, but the frequency profile of the surface was changed 

to the model of two gaussian frequency bands (plus the low-frequency base). 
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Figure 8-3: Demonstration of each gaussian frequency band independently (from left to right: Fb1 = 1.0, Fb2 = 

0.25 and Fb3 = 0.125). 

 
 

8.2 Relationship between frequencies and perceived roughness  

The next two subsections will explore the connection between the narrow-band spectra 

surfaces and perceived roughness. To achieve these two new experiments were 

developed, one for the mid-range frequency and one for the high-range frequencies.  

   

8.2.1 Exploring mid-range frequencies 

In the first experiment, the mid-range frequencies will be explored (0.8 cpd to 7.0 cpd). 

This experiment compromises all of the frequencies that fall underneath the B (centre at 

1.5 cycles per degree) and D (centre at 4.4 cycles per degree) gaussian approximations 

of the spatial frequency channels, as previously described.  

 

The experiment will follow a similar methodology to that described in Chapter 6, where 

contour lines of similar perceived roughness were discovered by comparing two 

different parameters that influence perceived roughness. For example in the experiment 

from Section 6.4, the two influencing parameters were the σ and β values. However, for 

this experiment, the two magnitudes from the gaussian filter bands will be used as 

influencing parameters (Fb1 and Fb2).  

 

The method of adjustment was used again to obtain the iso-roughness lines between Fb1 

and Fb2, but this time the observers were adjusting the magnitude of Fb2 to match a 

reference surface with fixed parameters. In each trial of this experiment, the observer 

was asked to match a pair of surfaces, where the reference surface always had a 
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magnitude of Fb1 {1.0} and a magnitude of Fb2 {0.25, 0.5 or 1.0}. The adjustable 

surface had a fixed magnitude of Fb1 {0.25, 0.5, 1.0 or 2.0}, while the magnitude of Fb2 

could be adjusted by the observers.  

 

Observers were presented with a surface pair, the reference surfaces and the adjustable 

surface and then observers were asked to adjust the adjustable surface until it looked as 

being similar in perceived roughness to the reference surface, again imaging how 

surfaces would feel if touched. At no point, the observers were aware they were 

adjusting the magnitude of just one frequency band or the inner workings of the 

adjustment.    

 

Each observer was asked to match in random order twelve surface pairs (i.e. all 

combinations of three values of Fb2 in the reference surface and four values of Fb1 in the 

adjustable surface). Each pair was presented three times, with different random θ (seed 

values {1, 2 or 3}) to add robustness to the results. In total, each observer had to match 

by perceived roughness thirty-six surface pairs (plus four practice pairs). The 

experiment stimuli, trials and characteristics are fully described in Appendix 8-A. Ten 

naïve observers volunteered to take part in the experiment, which used the standard set-

up described in Chapter 5. Each observer took on average twelve seconds to match a 

surface pair. The results from all the observers are compiled in Figure 8-4 and tabulated 

in Appendix 8-B. 

 

Figure 8-5 shows the median values of Fb2 for each of the 12 matches, together with the 

iso-roughness lines fitted to the all the observers’ data using the least squares fitting 

method, which show that the best fitting line is a polynomial function. It is also possible 

to discern from Figure 8-5 that the high frequency band (Fb2) is much more important to 

perceived roughness than the lower frequency band (Fb1), as small changes in Fb2 

influence drastically Fb1 (also, the two variable samples are statistically relevant as p < 

0.000001 in both). The parameters of the lines, statistical relevance and fitting error are 

further detailed in Appendix 8-C. 
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Figure 8-4: Individual data for the experiment on mid-range frequencies.   

 

 
 

Figure 8-5: Median observations and iso-roughness lines in the space [Fb1, Fb2]. 
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However, we cannot generalize that higher frequencies are more influential in 

perceiving roughness than lower frequencies, as this might not hold true for frequencies 

greater than the second frequency band (centre at 4.4 cpd). Therefore, in the next 

section, the effects of the second and third (highest) gaussian frequency bands will be 

explored. 

 

8.2.2 Exploring high-range frequencies 

Humans with 20/20 vision are sensitive to frequencies up to 30 cpd, but frequencies 

above 10 cpd were not tested in the previous experiment. As a result in this section a 

new experiment is constructed this follows the previous experiment to analyze high 

frequencies (relationship between the Fb2 and Fb3 with centre at 16 cpd and a standard 

deviation of 1.3 cpd).  

 

The same ten observers as the previous experiment (Section 8.2) were asked again to 

match by perceived roughness a number of surfaces using the method of adjustment. 

Each observer had to match four pair of surfaces where the reference surface always 

had a magnitude of Fb2 [0.25] and a magnitude Fb3 [0.25, 0.125 or 0.0625]. The 

adjustable surface had a fixed magnitude of Fb2 [0.5, 0.25, 0.125 or 0.0625], while the 

magnitude of Fb3 could be adjusted by the observers.  

 

In total, each observer had to match thirty-six surface pairs (three value of Fb3 in the 

fixed surface times four values of Fb2 in the adjustable surface times three random 

phases for robustness) plus four trial pairs. The full description of the experiment is 

compiled in Appendix 8-E, with includes all the characteristics for the stimuli in each 

trial. The observers took on average 10 seconds to match a surface pair, all the 

observations are fully described in Appendix 8-F and plotted in Figure 8-6.  

 

Figure 8-7 shows the median values of Fb2 for each of the 12 matches (p > 0.00001 for 

both variables), together with the iso-roughness lines fitted to all the observers’ data 

using the least squares fitting method. Polynomial lines were found to be the best fit to 

construct the iso-roughness lines from the observers’ data, these follow a similar decay 

as the previous experiment where higher frequencies have a bigger impact on perceived 



  

 
91 

roughness than the lower frequencies as clearly revealed in Figure 8-7 and fully 

described, including statistical analysis in Appendix 8-D. 

 

 
Figure 8-6: Individual data for the experiment on high-range frequencies. 

 
Figure 8-7: Median observations and iso-roughness lines in the space [Fb2, Fb3]. 
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From the last two experiments, it is possible to conclude that higher frequencies are 

increasingly significant to the perception of roughness, across the range from 0.8 cpd to 

30 cpd. It was not possible to test frequency bands higher than 30 cycles per degree 

because reliable measurements are difficult to obtain due to the limitation in human 

vision and equipment limitations (resolution, size and modulation transfer function of 

the displays). 

 

Finally, the results from the previous two experiments were re-plotted in logarithmic 

scales to demonstrate in similar scales, how different frequencies affect perceived 

roughness. This are demonstrated in Figure 8-8 for the [Fb1, Fb2] space and Figure 8-9 

for the [Fb2, Fb3] space.  

 

 
These two relationships will be used in the next section to refit a perceptual roughness 

estimator that takes into account of all frequencies across the range studied, applying 

similar weight to each experiment. 

 

 
 

Figure 8-8: Iso-roughness lines in decades from the experiment in section 8-2. 
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Figure 8-9: Iso-roughness contour lines for the experiment in section 8-3. 

 
 

8.3 Modelling perceived roughness including the frequency bands experiments. 

As described in chapter seven, two functions for the F1 filter of the proposed FRF 

model fit the observed iso-roughness lines from Chapter 6 with the lowest error. These 

two functions are a gaussian function and a power function. Unfortunately, it is 

impossible to differentiate the best fitting function only from the data in chapter six. 

Therefore, these two functions will be tested against the new iso-roughness lines 

discovered from the previous two experiments (Section 8-2). 

 

8.3.1 Roughness estimator using a gaussian function for F1 

First, the estimator using a gaussian function will be modified to incorporate the two 

new iso-roughness line plots (Fb1 versus Fb2 and Fb2 versus Fb3). Looking at the results 

from the previous sections it is possible to appreciate that frequency bands in higher 

frequencies have more perceptual importance than the band with lower frequencies. 

Therefore, when fitting a gaussian function as the F1 filter this mathematically can only 

have two forms of parameters: 
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i. where the centre of the gaussian function (µ) is in between two frequency bands 

(in between Fb1 and Fb2 or in between Fb2 and Fb3) and 

ii. where the centre of the gaussian function (µ) is above all the frequency bands 

and it can have any width (σg).  

The parameters of the gaussian function will never be able to fit the model if the centre 

of the function (µ) is lower than the centre of both of the frequency bands as this is 

mathematically not possible.   

   

For (i), the centre of the gaussian function needs to be in between the two frequency 

bands simply because: 

a) The lower, less important frequency band that is bigger in magnitude (as 

described in the results from Section 8.3) will lie in the raising section of the 

gaussian function therefore this will reduce it.  

b) At the same time, the centre and the immediate lowering part of the gaussian 

will boost the more important, but low in magnitude, high band.  

 

As a result, by having the gaussian function in between two of the frequency bands it is 

possible to minimize the error and produce a reliable estimator for perceived roughness. 

 

However, a problem arises when using a gaussian function for F1 in between the 

experiments’ three frequency bands as the model needs to be fitted to both sets of iso-

roughness lines (Section 8.2.1 and Section 8.2.2). Therefore, this would imply that it is 

necessary to have two gaussian functions for F1, one in between the first and middle 

frequency bands (space [Fb1, Fb2]) and the second one in between the middle and last 

frequency bands (space [Fb2, Fb3]), these gaussian functions would also need to be of a 

rather a small width (σg < 1.3).  

 

As a result, the parameters described in (i) are mathematically possible but unlikely to 

be used for the perception of roughness, as σg is small.  Therefore, a more attention will 

be devoted to a gaussian function as described in (ii) where the centre is above the 

experiment’s frequency bands (>16 cpd), as it is unlikely the F1 filter is composed of 

just two gaussian shapes. Nonetheless, the F1 filter might be composed of a number of 

inter-lapping gaussian functions. This will not be tested, as it requires the optimization 

of a number of gaussians with different weights and parameters for the three 
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experiments. Furthermore, if the F1 filter is formed by many gaussians then the final 

optimized function for F1 can be thought as an estimation of these multiple gaussians.  

 

As for the last form of parameters (ii) of the gaussian function were the mean is greater 

than the centre of the frequency bands, then this is mathematically viable (as observed 

in Section 8.2) because: 

a) The lower, less important however high in magnitude band is reduced with the 

starting inclination of the gaussian, whilst  

b) The high, more important but low in magnitude band is boosted with the 

increasing slope of the gaussian.  

As the centre of the gaussian needs to exceed the mean of the pairs of bands then it is 

implied that the centre of the gaussian needs to be greater than the third gaussian band 

mean frequency (> 16 cpd). 

 

Optimizing the parameters, using the same method as previously described in chapter 

seven, of the gaussian function [μ, σg] that give the best fit to the [Fb1, Fb2] iso-

roughness lines yields values of 28.29 cycles per degree and 4.91 cycles per degree 

respectively (see figure 8-10). The mean value is located above the mean of Fb3 and 

near the upper-edge of the 20/20 visual range. The parameters of the gaussian function 

that give the best fit to the [Fb2, Fb3] iso-roughness lines are similar to these values 

where μ is 24.65 cycles per degree and σg is 4.37 cycles per degree (see Figure 8-11). 
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Figure 8-10: Optimization of the parameters of the gaussian function with the [Fb1, Fb2] bands. 

 

 
Figure 8-11: Optimization of the parameters of the gaussian function with the [Fb2, Fb3] bands. 

 



  

 
97 

Currently, more important than finding the individual optimized parameters of each set 

of iso-roughness lines is to find a solution (of optimized parameters) that minimises the 

errors εt to the minimum of both. Therefore, a similar weight was assigned to each of 

the optimized parameters plots and then they were combined together, similar to 

calculating εt for the six iso-roughness lines in Section 8-2. The result from these new 

optimized values shows that the optimized parameters coincide with the upper range of 

the human visual acuity (30 cpd) as detailed in Figure 8-12. The optimized parameters 

are μ equal to 30 cycles per degree and σg equal to 5.0.  

 

 
         

Figure 8-12: Optimized parameters with all the experiments in chapter eight using a gaussian function. 

 

The optimized minimum from the experiments together falls on the edge of the visual 

range (µ > 30 cpd), further values were not calculated as with these values the function 

stops being a gaussian and it acts more as a simple slope or power function. When 

comparing this optimization to the ones in chapter seven (Figure 7-11) it is apparent 

that the two minima fall at very different points in the parameter space, in particular, the 

centre of the gaussian lies at approximately 4 cpd when the data from the experiment in 

Chapter six are fitted, but at 30 cpd when the present data are fitted. As a result, if we 
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sought to get a final optimization for the experiments in Chapter 6 and Chapter 8, the 

solution is going to be just an approximation of the correct value, as the final optimized 

parameters would be in between the optimal ones for each experiment. 

 

Figure 8-13 shows the three possible gaussian shapes of the optimized parameters for 

each of the experiments and the approximation of the optimized parameters when using 

all the experiments. In the figure, the gaussian functions are represented when: 

1. the optimal parameters are from the fit of the iso-roughness lines of the 

experiment in Chapter 6 [σ, β], 

2. the parameters are fitted to the iso-roughness lines from the [Fb1, Fb2] space, 

3. the parameters are fitted to the iso-roughness lines from the [Fb2, Fb3] space and 

4. the three sets of data are combined with equal weight. 

 

 

 
 
Figure 8-13: Demonstration of the optimized parameters for the gaussian function for each experiment and the 

total optimization by assigning equal weights to each experiment. 
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Figure 8-14: Fit of the model compared to the iso-roughness lines from chapter six when weighting each 

optimized parameter from the three experiments equally (unbroken lines are the model’s output). 

 

 

 
Figure 8-15: Fit of the model compared to the iso-roughness lines from [Fb1, Fb2] when weighting each 

optimized parameter from the three experiments equally (unbroken lines are the models output). 
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Figure 8-16: Fit of the model compared to the iso-roughness lines from [Fb2, Fb3] when weighting each optimize 

parameter from the three experiments equally (unbroken lines are the models output). 

 

When the experiments are similarly weighted the results are poor as demonstrated in 

Figure 8-14 for the experiment in Chapter 6, Figure 8-15 for the [Fb1, Fb2] iso-

roughness lines and Figure 8-16 for the [Fb2, Fb3] iso-roughness lines. Appendix 8-G to 

Appendix 8-O illustrate the fittings when weighting the model at the optimal parameters 

from each experiment.  

 

Nevertheless, the gaussian function was not the only one that fitted with the least error 

the iso-roughness lines from Chapter 6; a power function fitted the lines also as 

described in chapter seven, therefore the parameters from the power function will be 

also optimized by the two new experiments. 

 

8.3.2 Roughness estimator using a power function for F1 

In this section, the power function previously described in Section 7.3.2 will be 

optimized again to incorporate the two new experiments from Section 8.2. With these 
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new experiments, the new optimization is going to represent more accurately perceived 

roughness in most of the frequency spectrum. 

 

The optimizations of the parameters of the power function [fp, p] that minimize the error 

εt are shown in Figure 8-17 and 8-18. The optimal parameters for the [Fb1, Fb2] iso-

roughness lines are located at a starting frequency Fp of 0.70 cpd and an exponent p of 

1.31.  As for the optimized parameters for the [Fb2, Fb3] iso-roughness lines the Fp is at 

4.70 cpd and a p of 0.2. 

 

If the two sets of optimized parameters, for the experiments in this chapter, are weighted 

similarly and the optimal parameter is searched then there is a clear minimum at Fp of 

1.41 cpd and a p of 0.78.  Unfortunately, this minimum value does correspond to the 

optimized value from the experiment in Chapter 6 (Figure 7-6). Therefore, the final 

optimized parameters for the power functions are going to be a compromised 

approximation between experiments as shown in Figure 8-19.  

 

 
 

Figure 8-17: Optimization of the parameters of the power function for the [Fb1, Fb2] iso-roughness lines. 
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Figure 8-18: Optimization of the parameters of the power function for the [Fb2, Fb3] iso-roughness lines. 

 

 

Figure 8-19: Optimization of the parameters of the power function for the combined experiments. 
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Figure 8-20 shows the three possible power function shapes of the optimized 

parameters for each of the experiments and the approximation of the optimized 

parameters when using all the experiments. Finally, even when the experiments are 

similarly weighted the results are poor as demonstrated in Figure 8-21 for the 

experiment in Chapter 6, figure 8-22 for the [Fb1, Fb2] iso-roughness lines and Figure 8-

23 for the [Fb2, Fb3] iso-roughness lines. Appendix 8-G to Appendix 8-X illustrate the 

fittings when weighting the model at the optimal parameters from each experiment.  

 

 

 
 

Figure 8-20: Demonstration of the optimized parameters for the power function for each experiment and the 
total optimization when assigning equal weights to each experiment. 
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Figure 8-21: Fit of the model compared to the iso-roughness lines from chapter six when weighting each 
optimized parameter from the three experiments equally. 

 
 

 
 

Figure 8-22: Fit of the model compared to the iso-roughness lines from [Fb1, Fb2] when weighting each 
optimized parameter from the three experiments equally. 
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Figure 8-23: Fit of the model compared to the iso-roughness lines from [Fb2, Fb3] when weighting each 
optimized parameter from the three experiments equally. 

 
 Parameters for Optimizing with εt 

Gaussian 
Function 

[β, σ] [β, σ] 0.0198 
[Fb1, Fb2] [Fb1, Fb2] 0.0714 
[Fb2, Fb3] [Fb2, Fb3] 0.1072 

[β, σ] [β, σ]+ [Fb1, Fb2]+ [Fb2, Fb3] 0.0594 
[Fb1, Fb2] [β, σ]+ [Fb1, Fb2]+ [Fb2, Fb3] 0.861 
[Fb2, Fb3] [β, σ]+ [Fb1, Fb2]+ [Fb2, Fb3] 0.1627 

[β, σ]+ [Fb1, Fb2]+ [Fb2, Fb3] [β, σ]+ [Fb1, Fb2]+ [Fb2, Fb3] 0.3081 

Power 
Function 

[β, σ] [β, σ] 0.0187 
[Fb1, Fb2] [Fb1, Fb2] 0.0714 
[Fb2, Fb3] [Fb2, Fb3] 0.0983 

[β, σ] [β, σ]+ [Fb1, Fb2]+ [Fb2, Fb3] 0.0462 
[Fb1, Fb2] [β, σ]+ [Fb1, Fb2]+ [Fb2, Fb3] 0.1091 
[Fb2, Fb3] [β, σ]+ [Fb1, Fb2]+ [Fb2, Fb3] 0.1004 

[β, σ]+ [Fb1, Fb2]+ [Fb2, Fb3] [β, σ]+ [Fb1, Fb2]+ [Fb2, Fb3] 0.2556 
 

Table 8-1: Parameters for each of the iso-roughness lines using every single experiment and all of them. 

 
As observed from the optimal fittings of the gaussian function and the power function, 

the optimal F1 in the proposed model is a slope with a positive increment towards high 
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frequencies. However, none of the two functions could actually match well the [Fb1, 

Fb2] or [Fb2, Fb3] experiment at the same time (see Table 8-1), therefore this implies that 

the low and high end sections of the functions needs to be improved.  Therefore, in the 

next section a new function will be used to improve on the previous two.  

 

8.4 Improving further the model 

As previously described, the two preferred functions (gaussian and power) do not 

model well the [Fb1, Fb2] and [Fb2, Fb3] experiments at the same time; these are the ones 

testing mid-range to high-range frequencies. Therefore, this implies that the low-end or 

high-end part of the filter needs improvement. As a result, in this section, a new 

function is presented which appears as a gaussian function but has variable low and 

high ends that can be fully described by three parameters.    

 

This function will be described from now on as a variable Gaussian. Its mathematical 

formula is presented in Equation 8-2, where fp is the starting frequency that is set to 

avoid negative values, Fc is the cut-off frequency set at 30 cycles per degree. The kc 

variable is used to normalize the function, bc is set to -mc to normalize the functions as 

well, mc is the variable that crooks or alters the low-end part of the gaussian and cc is the 

variable that crooks or alters the high-end part of the gaussian. 
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௙೎

௙೛

 (8.2)

 
 
 
This function is similar in construction to the formula used by Mannos to describe the 

contrast sensitivity function (Mannos and Sakrison, 1974). The advantages of using this 

function are the low count of parameters but high variability of the shape of the 

gaussian. Figure 8-24 demonstrates how the mc and cc parameters influence the shape of 

the variable gaussian.   
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Figure 8-24: mc and cc parameters influencing the variable gaussian. 

 
 
When optimizing the parameters for the variable gaussian for each experiment, it is 

possible to deduct first the optimal value of Fp from the errors of each experiment, as 

the other two variables mc and cc increase proportionally with Fp. As a result, this 

variable Fp can be optimized separately from the other two. The value Fp was only 

tested until the start of Fb1, as higher values would have undermined the experiment 

using this band. The resulting optimization of this parameter is 0.235 cycles per degree 

and can clearly be appreciated in Figure 8-18. 

 

 
Figure 8-25: optimizing the Fp value for the variable gaussian.  
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This optimized Fp value was used to obtain further optimized values of mc and cc by 

minimizing the error for the three experiments, the results show that there are various 

minima as demonstrated in Figure 8-26. These minima are detailed in Table 8-2. 

However, by changing the value of kc, it is possible to tune these minima to a similar 

shape (as a multiplying a factor does not affect the model) but the high-end part of the 

variable gaussian is still undefined as illustrated in Figure 8-27 (using multiplied values 

of kc, defined as kcm).    

 

 
 

Figure 8-26: Optimization of the mc and cc parameters of the variable gaussian using all the three previous 
experiments. (Minima from left to right Opl, Op, Oph) 

 

Parameters Op Opl Oph 

cc 5.054 2.594 9.8497 

mc 0.0042 0.0026 0.0051 

kc 1.6891 2.131 1.405 

kcm 1.6891 2.771 1.377 

εt 0.2399 0.2408 0.2400 

Table 8-2: Optimized parameter values for the variable gaussian using the three experiments. 
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Figure 8-27: Three optimizations for the variable gaussians were they were match by multiplying a factor to 
them. Please notice that the variable function can be multiplied by any factor, as a result the plot for the line 

can go even further than plotted here.    

 
When the Op parameters are compared to the observed data, it is possible to discern that 

the variable gaussian is a much better function for the F1 filter, as shown in Figure 8-28 

to Figure 8-30. Although there are some small fitting errors in the lower magnitude 

bands of the band pass experiments, it is reasonable to assume that these errors are 

produced because of: 

a) the difficulty of matching these bands with small magnitude by the observers 

and  

b) the difficulty of testing even higher frequency bands than Fb3. 
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Figure 8-28: Iso-roughness lines from Chapter 6 compared to the predicted model using a variable gaussian 

with optimized parameters. 

 
 

 
 

Figure 8-29: Iso-roughness lines from [Fb1, Fb2] compared to the predicted model. 
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Figure 8-30: Iso-roughness lines from [Fb2, Fb3] compared to the predicted model. 

 
 

8.5 Summary and Discussion 

In Chapter 6 and Chapter 7, it was demonstrated that it is possible to construct a model 

using an FRF framework to account for the iso-roughness lines from Chapter 6. 

Unfortunately, two functions fitted quite well the first filter of the model; these were a 

gaussian function and a power function. The major difficulty in deciding on the most 

appropriate function was the symmetry in the stimuli and the low magnitude in the high 

frequencies.  

 

As a result, in this chapter, two new experiments based on spatial frequency channels 

were constructed, where frequency bands are compared to gather two new sets of iso-

roughness lines. The new experimental data show how frequencies influence perceived 

roughness. From the results, it was noticed that perceived roughness increments with 

frequency, until the highest frequency tested by the bands (30 cycles per degree). 
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Higher frequencies were not tested as it is very difficult to obtain reliable results from 

the observers, and also because of hardware limitations. 

 

Although the new iso-roughness lines from this chapter were not obtained from 1/Fβ 

noise surfaces they will serve to justify which model fits best these surfaces. One can 

argue here that there is no reason to combine these two kinds of surfaces to optimize a 

model for 1/Fβ noise surfaces but it would be impossible to discern the correct model 

from just these surfaces alone. However, it was shown that observers can reliably match 

perceived roughness from the frequency band surfaces and observers also found these to 

be similar to 1/Fβ noise surfaces in appearance as they are isotropic surfaces too. As a 

result, these surfaces were incorporated in the model.  

 

When fittings the gaussian and power functions to these two new experiments, it was 

demonstrated that the error of the gaussian model is reduced until the gaussian centre 

matches the limit of the 20/20 vision (30 cycles per degree), at which point the function 

loses its characteristic shape. As for the power function, it was not possible to match 

perfectly all the optimized parameters for the three experiments. 

 

As a result, a new function, with variable low and high parts, was constructed. This 

variable gaussian was tested on the experimental data. The results demonstrated that 

this function is the best fitting one for the F1 filter. Although some iso-roughness lines 

have a slight error, this can be attributed to the unavailable data at high frequency values 

(>16 cycles per degree).    

 

However, the scale in between the iso-roughness lines in each experiment is still 

unknown, and for that reason in the next chapter, a new experiment testing this scale 

will be constructed and the proposed model will be scaled accordantly. 
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CHAPTER 9  

SCALING THE PROPOSED MODEL 

 

 

It was demonstrated that an estimator for perceived roughness can be constructed using an 

FRF model were the first F1 filter is unknown in shape and parameters, and the RF2 stages 

act as a variance estimator. The shape of F1 and its parameters were found by optimizing 

and fitting a model to the data from psychophysical experiments. The final optimized 

function for F1 was a ‘variable gaussian’ with a centre (mean) above 15 cpd as described 

in the previous chapter. With this optimized estimator, it is possible to output data that 

matches both the observed iso-roughness lines in [β, σ] space and the band pass 

experimental data. 

 

A limitation of the estimator developed so far is that it can measure perceived roughness 

only to an ordinal level. It specifies that a surface lying on one iso-roughness line will be 

perceived as more rough or less rough than one lying on a lower or a higher line, 

respectively, but the scaling of perceived roughness remains unknown. The aim of this 

chapter is to extend the estimator, through a further experiment, to achieve this scaling, so 

that the ratio of the perceived roughnesses of two surfaces can be determined. This scaling 

will be applied to the estimator to produce a complete measurement for perceived 

roughness in 1/Fβ noise surfaces. 

 

This chapter is subdivided into five sections: the first (9.1) will explain the new scaling 

experiment, and Section 9.2 will show its results. The third Section (9.3) will add the scale 

to the model, followed by a fourth Section (9.4) which will summarize the final model for 

perceived roughness, finishing with a discussion of the results of the chapter as a whole 

and the implications of the final model (Section 9.5). 

 

9.1 Perceptual scaling in between iso-roughness lines 

From the experiments exploring σ and perceived roughness in chapter six, it is known that 

a surface which lies on a higher iso-roughness line (with a bigger σ reference) will be 
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perceived as being rougher than a surface lying in a lower iso-roughness line (with a 

smaller σ reference). But there is no way of establishing from the previous experiments the 

ratio of how much rougher one surface is perceived in comparison with a second one or 

how much rougher an iso-roughness line is to another. As a result, a new experiment will 

be designed in this section. 

   

To obtain the ratio or scale in between iso-roughness lines it is necessary to obtain 

somehow a quantitative value from the observers for each iso-roughness line in the [β, σ] 

space. Methods like numerical ratings or Likert scaling were not used because it is not 

known whether observers can accurately judge roughness numerically. Therefore, a new 

method had to be devised where observers make a quantitative judgement about the 

relative roughnesses of surfaces but without expressing the relationship in number form.  

 

The new method was a ‘variation’ of the method of adjustment because the original method 

was proven to produce reliable observations as previously described in chapters six and 

eight. The new method consisted of displaying two reference surfaces with different 

perceived roughness and a third adjustable surface. Observers were able to adjust this 

surface’s σ until it was equidistant in perceived roughness between the two reference 

surfaces. By using this method, it was possible to obtain a quantitative measurement of 

roughness indirectly from the observers. 

 

1/Fβ noise surfaces were used again for this experiment, a sample of the stimuli is 

demonstrated in Figure 9-1 where the σ value for each surface equals 0.4cm, 0.8cm and 

1.2cm respectively, whilst the β value equals 2.0, 2.2 and 2.2 in the same order. The 

parameters of the reference and adjustable surfaces used in the experiment were chosen so 

that the results identified midpoints between iso-roughness lines (σ references). The 

estimator was then scaled using these roughness mid-points. The complete stimuli and 

process are explained in the following section.  
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Figure 9-1: Demonstration of the stimuli for the mid-point experiment, where the surfaces in the sides are the 
samples, whilst the middle surface is the adjustable one. 

 

9.2 The mid-point experiment 

Pilot experiments were carried out to identify pairs of reference surfaces that were far 

enough apart in perceived roughness to enable observers to judge the midpoint between 

them. Based on the pilot results, sample surfaces were taken only from three of the iso-

roughness lines identified in Chapter 6; the  top, middle, and bottom lines from the [β, σ] 

space (see Figure 6-11). 

 

In each trial of the mid-point experiments, observers were presented with three surfaces:  

• two reference surfaces, presented in a single column on a display in portrait  

position, and 

• an adjustable surface, presented on a second display also in portrait position.  

All surfaces were at an equal distance from each other, and standard experimental 

conditions were used as previously described in Chapter 5.  

 

In the experiment, the pair of reference surfaces’ β was always fixed at 2.0 and the σ varied 

between 0.4cm, 0.8cm and 1.2cm (bottom, middle and top iso-roughness line’s references). 

On each trial, the two reference samples had different σ values, but the three possible 

combinations occurred equally often:  

• Bottom and middle iso-roughness reference: σref1 = 0.4cm and σref2 = 0.8cm;  

• Middle and top iso-roughness references: σref1 = 0.8cm and σref2 =1.2cm; 

• Bottom and top iso-roughness references: σref1 = 0.4cm and σref2 = 1.2cm. 
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The adjustable surface’s β value varied from 1.8 to 2.2 in 0.1 steps [1.8, 1.9, 2.0, 2.1 or 

2.2], and the σ value could be adjusted by the observer in the same way as in the previous 

experiments. Each of the five β values was tested for each of the three combinations of 

reference surfaces (5 β x 3 combinations = 15 stimuli).  

 

The fifteen stimuli combinations were repeated three times (with different θ) to add 

robustness, giving a sum of 45 trials for each observer (plus 5 learning trials), the complete 

description of the experiment, including information of the stimuli for each trial, is detailed 

in Appendix 9-1. Ten volunteers took part in the experiment, and they were instructed to set 

the adjustable surface so that it appeared to be midway in roughness between the two 

reference surfaces, again imagining how the surfaces would feel if touched. 

 

The results from individual observers are shown in Figure 9-2, 9-3 and 9-4 for each of the 

reference combinations (the statistical significance of each reference sample is p < 

0.00001). Shown is the value of σ for the adjustable surface set on each trial (three trials 

for each of 10 observers, for the 15 different combinations of parameter σ; tabulated values 

are described in Appendix 9-2). 

 

  

 
 

Figure 9-2: Observation for each trial of the ten observers of the lower and middle iso-roughness reference. 
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Figure 9-3: Observation for each trial of the ten observers of the lower and top iso-roughness reference. 

 

 

 
 

Figure 9-4: Observation for each trial of the ten observers of the middle and top iso-roughness reference. 

 

 
The consistency of the data from the mid-point experiment shows that the observers had no 
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the three midpoints and for every β value (15 values, demonstrated in Figure 9-5 and 

Appendix 9-3) will be used to obtain the scaled perceived roughness model.   

 

 
 

Figure 9-5: Medians from the results in the mid-point experiment. 

 
 

9.3 Adding units to the model 

It is possible to scale the previous un-scaled estimator by injecting the mid-point 

experiment median values into it. The final resulting scaled model will wrap the un-scaled 

estimator. As a result, the scaled estimator will be a function of the un-scaled one. 

 

To discover the scaled model (ξspr), first the un-scaled ξpr values were calculated using the 

best the variable gaussian from chapter eight with the Op, for all the fifteen median points 

from the mid-point experiment, these are given in Appendix 9-4. By knowing that each of 

these ξpr values is the perceptual average of the two reference surfaces and that in each pair 

of references all different values of β (five) have the same scale perceived value (ξspr), it is 

possible to construct a relationship between the scaled and un-scaled values.  

 

When mapping the un-scaled estimator to the scaled one using just one reference pair 

combination it is possible to appreciate that the five mid-points P1, P2, P3, P4, and P5 

(see Figure 9-4) have the same value of scaled perceived roughness, which is the mean 
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of the values of the two sample surfaces (H+L)/2. Their un-scaled values will differ 

slightly, as each is the output of the un-scaled estimator for the particular combination 

of parameters chosen by the observers as the midpoint between the samples, at different 

values of β for the adjustable surface. 

      

 
 

Figure 9-6: Mapping the un-scaled estimator to the scaled one for just one pair of reference surfaces 

 
By knowing the relationship between the scaled and un-scaled estimators, then it is 

possible to construct five equations for each of the three combinations of pairs of 

references (0.4cm vs. 0.8cm, 0.4cm vs. 1.2cm and 0.4cm vs. 1.2cm). As shown in 

Equation 9-1 to 9-5 for just one combination when assuming the scaled estimator is a 

polynomial function of the un-scaled one (where u are the ξpr mid-points). 

 

H ൅ L
2 ൌ a · uଵ

ଶ ൅ b · uଵ ൅ c (9.1)

H ൅ L
2 ൌ a · uଶ

ଶ ൅ b · uଶ ൅ c (9.2)
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H ൅ L
2 ൌ a · uଷ

ଶ ൅ b · uଷ ൅ c (9.3)

H ൅ L
2 ൌ a · uସ

ଶ ൅ b · uସ ൅ c (9.4)

H ൅ L
2 ൌ a · uହ

ଶ ൅ b · uହ ൅ c (9.5)

 

By having five equations per combination and adding the three formulas for the 

reference points (Equations 9-6 to 9-8), it is possible to describe the relationship in a set 

of eighteen equations. This set must be resolved to get the final scaled estimator but 

because all the equations’ left side are unknowns and this is a homogenous set of 

equations then two assumptions are needed to find a solution to the system: 

1. The value of c will equal zero because if the value of the estimator is zero then 

the perceived roughness of the surface will also be zero, and 

2. The perceived roughness of the roughest reference (H) will be a predefined 

value (100).  

 

H ൌ a · hଶ ൅ b · h ൅ c (9.6)

M ൌ a · mଶ ൅ b · m ൅ c (9.7)

L ൌ a · lଶ ൅ b · l ൅ c (9.8)

 

The final set of equations with their corresponding ξpr values (Appendix 9-4) are fully 

shown in Appendix 9-5. A less square fitting was used to resolve the set (residue was 

0.971). The final scaled model is described in Formula 8.9, were ks is a multiplier equal 

to the predefined value of 100 as previously explained. 

 

 

௦௣௥ߦ ൌ ݇௦ · ሺെሺ1.6986 · 10ି଺ሻ · ௣௥ߦ
ଶ ൅ 0.2543 ·  ௣௥ሻ (9.9)ߦ
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Apart from the polynomial function others were also fitted to the data, these include: 

• A linear function that had the next fitting parameters: (݇௦ · ሺ 0.1537 ·  ௣௥ሻ, thisߦ 

linear function had an r2 equal to 0.944. In addition, 

• A quadratic function was impossible to fit because the solution to the least 

squares is not unique. 

The polynomial therefore was used as this function because it produces the least error of 

them all. The final function is demonstrated in Figure 9-7. 

 

 
 

Figure 9-7: Scaling the estimator with a polynomial function. 

 

9.4 The optimal model for perceived roughness of 1/Fβ surfaces  

The final model therefore is the best fitting variable gaussian (Op) for the F1 filter 

wrapped into a polynomial function to scale it. The actual mapping of the scaled 

perceived roughness and the [β, σ] space is show in Figure 9-8, where the different 

colours represent the perceived roughness units. Only values topping 100 units were 

plotted, as it is still know if bigger values will be perceived in this same continuous 
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scale. The final parameters for the complete measurement are described in Equation 9-

10 and Equation 9-11 for the scaling. 

 

 
 

Figure 9-8: Mapping perceived roughness in the [β, σ] space. 
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࢘࢖࢙ࣈ ൌ ࢙࢑ · ሺെሺ૚. ૟ૢૡ૟ · ૚૙ି૟ሻ · ࢘࢖ࣈ

૛ ൅ ૙. ૛૞૝૜ · ሻ (9.11)࢘࢖ࣈ

 
 
 

9.5 Summary and Discussion 

In previous chapters, an estimator was discovered which simulated the observers’ 

perception of roughness in 1/Fβ noise surfaces. Although the estimator produces iso-

roughness lines that match the observers perception, it was still unknown the scale in 

between iso-roughness lines. As a result, a new experiment was constructed to get 

quantitative values for these iso-roughness lines.  

 



  

 
123 

Ten observers took part in the experiment, they were asked to adjust a surface until it 

was equidistant in roughness to two other reference surfaces. The results from this 

experiment were later incorporated into the previous un-scaled model to scale it 

correctly. 

 

The scaling of the model was done by constructing a set of 18 equations that 

encapsulated the relationship between the un-scaled and the scaled model. By solving 

this set of equations, it was possible to wrap the un-scaled estimator into a polynomial 

function giving the final scaled model that can fully describe perceived roughness for 

1/Fβ noise surfaces. 
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CHAPTER 10  

SUMMARY AND CONCLUSIONS 

 

 

This final chapter will summarize the thesis as whole in Section 10.1 including a 

discussion about how the goals of the thesis were achieved. Section 10.2 will discuss 

some implications about the results and future work, finally Section 10.3 will analyse 

the thesis and conclude it. 

10.1 Summary 

The first goal of this thesis was to find a common or starting surface characteristic to 

research, as it would be impossible for the author to research the hundreds of 

characteristics that exist for textured surfaces. The most common characteristic was 

researched from previous studies, it was found that roughness, or similar associated 

terms, reoccur in visual studies of surfaces dimensions. This term was also been found 

to be the most reoccurring term for tactile dimensions, and it is possible to relate the 

visual and tactile dimensions because studies have proven that there are relationships 

between how human see and touch objects, finally in linguistics, roughness is the most 

used term used to describe surfaces after qualitative terms (soft, warm, harsh). 

Therefore, it was concluded that this term is the most appropriate one to research in this 

thesis as fully described in the first part of Chapter 2.  

 

After targeting roughness as the research quality, physical and perceptual related 

measurements were researched in the second part of Chapter 2. The international 

standards organization defines sixteen parameters to describe roughness; from these it 

was found that the three most suitable parameters are root mean square deviation Rq, 

skewness Rsk and kurtosis Rku, from these only Rq was used at it encompass the same 

statistical information as the other two suitable parameters. When researching 

perceptual measurements for roughness there were only three studies investigating 

perceived roughness and either fractal dimension, light position or viewpoint.  
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The lack of more studies for perceived roughness motivated the development of a 

general methodology to discover perceptual characteristic. This was fully described and 

discussed in Chapter 3, starting with the importance of controlling the illuminant 

position and the surface viewpoint, to solve ambiguities a motion was added to the 

surfaces. For the stimuli, it was decided that synthetic surfaces would be used; this 

offered great advantages over real samples as observers can adjust parameters of this. 

Finally, 1/Fβ noise surfaces were chosen to be use in this thesis as these are 

parsimonious and have a natural appearance, therefore avoiding boxing the observations 

of the subjects to some unrealistic propose-build surface.  

 

To conclude the general methodology, a summary of psychophysical methods was 

described in the last section of Chapter 3. The method of adjustment was chosen to be 

use for most of the experiments in this thesis, as this is the most flexible and fastest 

method to discover how the parameters of the surface interact with perceived roughness. 

Other methods as category scaling or pairwise comparisons are also use sparely 

throughout this thesis.  

 

Once the general methodology was defined were natural synthetic stimuli, movement 

and psychophysical methods was defined, the next goal is to render this stimuli 

correctly. The mathematical formulation of the surfaces was described in the first 

section of Chapter 4, followed by how these surfaces were constructed and rendered.  

 

To display correctly the surfaces, a per-pixel Lambertian illumination was used for 

rendering the reflectance, whilst per-vertex displacement was used to displace correctly 

the geometry of the surface to add correct occlusion and edges. Finally, to give the 

surface cast-shadows a shadow mapping was applied. Using all these techniques, 

surfaces compose of a quarter of a million polygons were rendered realistically at 15 

frames per second (including the ability to morph their height in real-time). 

 

As previously discussed in the methodology, the surfaces were rotated to avoid 

ambiguities. The animation was developed from a short experiment capturing the 

observers natural movements of the surface, it was discover from this experiment that 

observers like an angle between the light position and the surface normal of around 60 
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degrees. By exploiting this new data, a movement path was developed as described in 

the last section of Chapter 4. 

 

Before any experiment took place all the equipment was setup correctly, including 

brightness levels (100 cd/m2), monitor calibration, controlling the distance between 

stimuli and observer, etc. This setup and calibrations procedures are fully described in 

Chapter 5. 

 

The next goal of this thesis was to define the 1/Fβ noise surface parameters (σ, β and 

seed of θ) in terms of perceived roughness. By using the proposed methodology in three 

experiments, it was proven that perceived roughness increases when increasing σ, in 

addition perceived roughness decreases when increasing β and the random seed θ of the 

surfaces did not affect perceived roughness as described fully in Chapter 6. 

 

Because the random θ value does not change perceived roughness in the surfaces, these 

can be described only using β and σ; as a result in the last section of Chapter 6 a new 

experiment was developed to map the relationship between the [β, σ] space and 

perceived roughness. From the observations of this experiment, it is demonstrated that 

there is a clear linear relationship between log σ and β for the lines of constant 

perceived roughness in the 1/Fβ noise surfaces. 

 

With the help of the [β, σ] space it was possible to construct an estimator for perceived 

roughness for this kind of surface. The estimator was inspired by common FRF models 

were the first F is a filter whilst the RF section forms a variance estimator. The filter 

shape and parameters were optimized and it was discovered that two shapes fitted the 

best the observed data, a power shape and a gaussian shape. Unfortunately, from the 

experimental observations it was impossible to distinguish the best fitting model as 

described in Chapter 7. Therefore, a new textured surface, but similar in kind was used 

to obtain more observations. 

 

This new stimuli consisted of gaussian band pass surfaces, where the magnitude and 

position of the gaussian were chosen in anticipation for new experiment, the objective 

of this was to further study how high and mid frequencies affected perceived roughness. 

Chapter 8 describes the construction of these new surfaces. Also in this chapter, a new 
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set of experiments was developer and it was found that the higher the frequency is the 

more important this is to perceived roughness.   

 

With the new observations, it was finally discovered that the best fitting gaussian 

function for the F filter has a centre pass 30 cycles per degree and therefore it becomes a 

power function. However, the filter optimization was further improved by introducing a 

gaussian function with a variable low and high ends, this produce better fittings to the 

data and it is fully described in the last section of Chapter 8.  Finally, the estimator was 

modified to account for the scaling between iso-roughness lines in the [β, σ] space. 

 

The method consisted of wrapping the un-scaled optimized model into a function that 

would scale it correctly. A final experiment was developed that measured the mid points 

between iso-roughness lines; with these new observations it was found that a 

polynomial best wraps the un-scaled model. As described in Chapter 9 with this final 

modification to the model, it is possible to estimate perceived roughness in 1/Fβ noise 

surface. 

 

10.2 Discussion and future work 

I would like to discuss in this section a few open questions about the model. First, the 

model works well estimating perceived roughness for surfaces but all the calculations in 

the model are distance dependant (cycles per degree). Observers seem to judge 

roughness independently of the distance, therefore they must somehow compensate for 

the differences in distance whilst judging roughness, this is unknown and out of the 

scope of this thesis. Note that to reduce the variations of this compensation each 

observer was asked in every experiment to think about how the texture would feel if 

touched. Therefore, they would mentally compensate for the distance.   

 

Another open question about the model is how this is going to react with external 

changes in the surface like colour, gloss, etc. This is still unknown but Ho, Landy and 

Maloney (2008) have started studying the effects of these external changes in the 

surface appearance and perceived roughness. Studying the effect of these external 

changes and perceived roughness is very extensive and out of reach for this thesis but it 

is worth as future work.  
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10.3 Final conclusions 

In this thesis, a new methodology was developed to study perception of surface 

characteristics. From previous studies and theory, it was decided that roughness is the 

most suitable characteristic to start the research. A new methodology was also 

developed which can be used in future studies related to the appearance of material. 

 

With the help of the new methodology and various experiments an estimator for 

perceived roughness was discover, this is based on common FRF models for perception. 

This model can fully describe perceived roughness for 1/Fβ noise surfaces. The mayor 

achievement of this thesis is that it will serve as a first step to discover more 

systematically how textured surfaces are perceived by humans.      
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THE APPENDICES 

 
 

Appendix 3-A: The performance of the method of adjustment was calculated from the 

experiment in Section 6-4 where by accumulating all the comparisons from the 

observers, were they used the method of adjustment to match surfaces with similar β 

values. It is possible to show, as detailed in the table below that the method of 

adjustment is a very accurate method when matching perceived roughness.  

 

Matching σ(cm) with similar pair of surfaces 

σ reference 0.4 0.6 0.8 1.0 1.2 

Number of samples 40 40 40 40 40 

Mean 0.449 0.626 0.789 1.080 1.256 

Median 0.458 0.616 0.792 1.086 1.288 

Standard Error 0.013 0.015 0.022 0.016 0.034 

Standard Deviation 0.084 0.098 0.141 0.100 0.216 

Minimum 0.251 0.354 0.462 0.828 0.779 

Maximum 0.613 0.814 1.173 1.217 1.914 

Confidence Level (95.0%) 0.027 0.031 0.045 0.032 0.069 

Confidence Interval Min 0.422 0.594 0.744 1.048 1.187 

Confidence Interval Max 0.476 0.657 0.834 1.112 1.325 
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Appendix 4-A: Source code used to generate the random phase in Matlab: 
01 function phase = generateRandomPhase(varargin) 
02 %GENERATERANDOMPHASE(theSize) 
03 %GENERATERANDOMPHASE(theSize, state) 
04 % 
05 % Random Phase Generator 
06 % Version 1.0 >> UnOptimized Version 
07 % 
08 %INPUTS... 
09 % theSize = image size 
10 % state   = if given, will force state of rand 
11 % 
12 %OUTPUTS... 
13 % phase  = random phase, output can be repeated with state value [0 
14 to ...] 
15 % 
16 % Stefano Padilla 
17 % Texture Lab 2005. 
18 % 
19 % See also: GENERATERANDOMPHASE, GENERATEFRACTALMAGNITUDE 
20  
21 [cax,args,nargs] = axescheck(varargin{:}); 
22 error(nargchk(1,3,nargs)); 
23   
24 if nargs > 2 
25     error('Too Many Arguments') 
26 elseif nargs == 2 
27     % Generate random phase with a repeated state 
28     n = args{1}; 
29     state = args{2}; 
30     rand('state',state); 
31     phase = rand(n,n)*2*pi;  
32 else 
33     % Generate random phase 
34     n = args{1}; 
35     phase = rand(n,n)*2*pi;  
36 end 
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Appendix 4-B: Source code used to generate the magnitude of the 1/Fβ noise surfaces 

in Matlab: 
 
01 function magnitude = GenerateFractalMagnitude(theSize, beta) 
02 %GENERATEFRACTALMAGNITUDE(theSize, beta) 
03 % 
04 % Fractal Magnitude Generator 
05 % Version 1.0 >> UnOptimized Version 
06 % 
07 %INPUTS... 
08 % theSize = image size 
09 % beta    = roll-off factor 
10 % 
11 %OUTPUTS... 
12 % magnitude = array of frequencies  
13 % 
14 % Stefano Padilla 
15 % Texture Lab 2005. 
16 % 
17 % See also: GENERATERANDOMPHASE, GENERATEFRACTALMAGNITUDE 
18   
19 % Generate magnitude 
20 for col=1:theSize 
21     for row=1:theSize 
22         u=col-(theSize/2+1); 
23         v=(theSize/2+1)-row;  
24         if ((u==0) & (v==0)) 
25             magnitude(row,col)=0; 
26         else 
27             f=sqrt(u*u + v*v); 
28             magnitude(row,col)=power(f,-beta); 
29         end 
30     end 
31 end 
 
 
 
 
Appendix 4-C: Table detailing the values for the normalizing parameter N(β) as 

detailed in Equation 4-1. 

 

β N(β) 

1.7 7434.4 
1.8 7721.9 
1.9 7967.3 
2.0 8178.8 
2.1 8362.3 
2.2 8522.8 
2.3 8663.9 
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Appendix 4-D: Source code used to generate the height maps of the 1/Fβ noise surfaces 

in Matlab: 

 
01 % Variables: 
02 % sizen = size; 
03 % phaseState = randomSeed; 
04 % beta = roll-off factor 
05 % newRMS = new rms value 
06   
07 phase = GenerateRandomPhase(sizen,phaseState);      % Phase 
08   
09 mag = GenerateFractalMagnitude(sizen,beta);         % Magnitude 
10   
11 [xc,yc]=pol2cart(phase,mag);                        % To Cartesian 
12 f = xc+i*yc; 
13   
14 n = size(f,2);                 % Enforce complex conjugate symmetry 
15 for col=(n/2+1):n 
16     for row=2:n 
17         u=col-(n/2+1); 
18         v=(n/2+1)-row;  
19         if (~((u==0) & (v==0))) 
20             f(row,col)=conj(f(n+2-row,n+2-col));  
21         end 
22     end 
23 end 
24   
25                                              % Inverse FFT 
26 unswapF    = ifftshift(f);                   % Unswap 
27   
28 unswapReal = real(ifft2(unswapF));        % Real part from the IFFT 
29 unswapImaginary  = imag(ifft2(unswapF));  % Imaginary part IFFT 
30 
31 realF       = fftshift(unswapReal);          % shift again 
32 imagF       = fftshift(unswapImaginary);     % shift again 
33   
34 mean = double((sum(sum(realF)))/n); 
35 variance = double((sum(sum(((abs(realF - mean)).^2))))/n); 
36 rms = double(sqrt(variance));                 % Rq 
37   
38 s = (realF./rms) * (newRMS);                  % Change to any RMS 
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Appendix 4-E: Observers percentage time vs. the angle between the surface normal and 

the light position. 
Angle s1 s2 s3 s4 s5 s6 s7 

1.1 0.001321 0.017455 0.029469 0.00124 0.043869 0.005106 0.031051 
2.3 0.002643 0.03491 0.058938 0.00248 0.087738 0.010212 0.062103 
3.4 0.003964 0.052365 0.088406 0.00372 0.131606 0.015319 0.093154 
4.5 0.007047 0.067493 0.168698 0.011161 0.194398 0.022127 0.159396 
6.8 0.011892 0.080293 0.299813 0.024801 0.276113 0.030637 0.260829 
9.0 0.018499 0.090765 0.48175 0.044643 0.37675 0.04085 0.397453 

11.3 0.025106 0.101238 0.663688 0.064484 0.477388 0.051062 0.534076 
13.5 0.032593 0.127614 0.822565 0.091352 0.634369 0.060849 0.611496 
15.8 0.040962 0.169895 0.958381 0.125248 0.847694 0.070211 0.629713 
18.0 0.050211 0.22808 1.071138 0.16617 1.117363 0.079146 0.588725 
20.3 0.059461 0.286265 1.183894 0.207093 1.387031 0.088082 0.547738 
22.5 0.08853 0.387503 1.347044 0.233548 1.636913 0.120421 0.55105 
24.8 0.13742 0.531794 1.560588 0.245535 1.867006 0.176163 0.598663 
27.0 0.20613 0.719138 1.824525 0.243055 2.077313 0.255309 0.690575 
29.3 0.27484 0.906481 2.088463 0.240575 2.287619 0.334454 0.782488 
31.5 0.356763 1.32385 2.31695 0.322008 2.424813 0.501683 0.882681 
33.8 0.4519 1.971244 2.509988 0.487353 2.488894 0.756994 0.991156 
36.0 0.56025 2.848663 2.667575 0.73661 2.479863 1.100388 1.107913 
38.3 0.6686 3.726081 2.825163 0.985868 2.470831 1.443781 1.224669 
40.5 0.924067 4.455694 2.861035 1.344675 2.757265 1.908029 1.525242 
42.8 1.32665 5.0375 2.775194 1.813031 3.339163 2.493131 2.009631 
45.0 1.87635 5.4715 2.567638 2.390938 4.216525 3.199088 2.677838 
47.3 2.42605 5.9055 2.360081 2.968844 5.093888 3.905044 3.346044 
49.5 3.176579 6.178167 2.539896 3.930323 5.598379 4.703744 4.01841 
51.8 4.127938 6.2895 3.107081 5.275375 5.73 5.595188 4.694938 
54.0 5.280125 6.2395 4.061638 7.004 5.48875 6.579375 5.375625 
56.3 6.432313 6.1895 5.016194 8.732625 5.2475 7.563563 6.056313 
58.5 7.358125 6.03475 5.521023 9.582875 5.01225 8.10225 6.386708 
60.8 8.057563 5.77525 5.576125 9.55475 4.783 8.195438 6.366813 
63.0 8.530625 5.411 5.1815 8.64825 4.55975 7.843125 5.996625 
65.3 9.003688 5.04675 4.786875 7.74175 4.3365 7.490813 5.626438 
67.5 8.787438 4.528523 4.486208 6.719929 4.002738 6.810419 5.211146 
69.8 7.881875 3.856319 4.2795 5.582788 3.558463 5.801944 4.75075 
72.0 6.287 3.030138 4.16675 4.330325 3.003675 4.465388 4.24525 
74.3 4.692125 2.203956 4.054 3.077863 2.448888 3.128831 3.73975 
76.5 3.411733 1.555809 3.681146 2.116813 1.956454 2.128435 3.258677 
78.8 2.445825 1.085696 3.048188 1.447175 1.526375 1.4642 2.802031 
81.0 1.7944 0.793616 2.155125 1.06895 1.15865 1.136125 2.369813 
83.3 1.142975 0.501537 1.262063 0.690725 0.790925 0.80805 1.937594 
85.5 0.673895 0.290138 0.642771 0.41956 0.5204 0.551463 1.563746 
87.8 0.387161 0.15942 0.29725 0.255456 0.347076 0.366364 1.248269 
90.0 0.282773 0.109383 0.2255 0.198413 0.270951 0.252753 0.991163 
92.3 0.178384 0.059346 0.15375 0.141369 0.194827 0.139141 0.734056 
94.5 0.104827 0.026376 0.100792 0.101273 0.142357 0.062975 0.533671 
96.8 0.062103 0.010473 0.066625 0.078125 0.113542 0.024254 0.390006 
99.0 0.050211 0.011637 0.05125 0.071925 0.108381 0.022977 0.303061 
101.3 0.038319 0.0128 0.035875 0.065725 0.103221 0.021701 0.216117 
103.5 0.02863 0.012412 0.044844 0.058698 0.091609 0.019148 0.15567 
107.6 0.021142 0.010473 0.078156 0.050844 0.073545 0.015319 0.121721 
111.8 0.015857 0.006982 0.135813 0.042163 0.04903 0.010212 0.114269 
115.9 0.010571 0.003491 0.193469 0.033482 0.024515 0.005106 0.106817 
120.0 0.007928 0.001746 0.222297 0.029142 0.012258 0.002553 0.103091 
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Appendix 6-A: Table detailing the variables from the category scaling experiments 

described in Section 6.1. The first column shows the actual number of observations, 

including the training stimuli triplets; the next nine rows represent the parameters (σ, β 

and θ) from surface.  The last two rows symbolize the order in which the stimuli were 

shown to the observers. 

 
 
 

No Trial σ1 β1 θ1 σ2 β2 θ2 σ3 β3 θ3 
Order 

No 
Row 

Order 
1 1 0.6 1.8 25 0.8 1.8 25 1.0 1.8 25 07 1-3-2 
2 1 0.6 1.8 25 0.8 1.8 25 1.2 1.8 25 01 1-2-3 
3 1 0.6 1.8 25 0.8 1.8 25 1.4 18 25 09 3-2-1 
4 1 0.6 1.8 25 1.0 1.8 25 1.2 1.8 25 06 2-1-3 
5 1 0.6 1.8 25 1.0 1.8 25 1.4 1.8 25 19 3-2-1 
6 1 0.6 1.8 25 1.2 1.8 25 1.4 1.8 25 20 3-1-2 
7 1 0.8 1.8 25 1.0 1.8 25 1.2 1.8 25 08 3-2-1 
8 1 0.8 1.8 25 1.0 1.8 25 1.4 1.8 25 11 1-2-3 
9 1 0.8 1.8 25 1.2 1.8 25 1.4 1.8 25 17 1-3-2 

10 1 1.0 1.8 25 1.2 1.8 25 1.4 1.8 25 05 3-2-1 
11 2 0.6 2.2 30 0.8 2.2 30 1.0 2.2 30 12 3-1-2 
12 2 0.6 2.2 30 0.8 2.2 30 1.2 2.2 30 04 3-2-1 
13 2 0.6 2.2 30 0.8 2.2 30 1.4 2.2 30 15 1-2-3 
14 2 0.6 2.2 30 1.0 2.2 30 1.2 2.2 30 02 2-3-1 
15 2 0.6 2.2 30 1.0 2.2 30 1.4 2.2 30 16 3-2-1 
16 2 0.6 2.2 30 1.2 2.2 30 1.4 2.2 30 03 1-2-3 
17 2 0.8 2.2 30 1.0 2.2 30 1.2 2.2 30 13 3-2-1 
18 2 0.8 2.2 30 1.0 2.2 30 1.4 2.2 30 10 1-2-3 
19 2 0.8 2.2 30 1.2 2.2 30 1.4 2.2 30 18 1-2-3 
20 2 1.0 2.2 30 1.2 2.2 30 1.4 2.2 30 14 3-2-1 
21 Practice 0.8 2.2 30 1.0 2.2 30 1.2 2.2 30 01 1-2-3 
22 Practice 0.6 1.8 25 1.0 1.8 25 1.4 1.8 25 02 3-2-1 
23 Practice 1.0 2.2 30 1.2 2.2 30 1.4 2.2 30 03 1-2-3 
24 Practice 0.6 1.8 25 0.8 1.8 25 1.0 1.8 25 04 1-2-3 
25 Practice 0.8 2.2 30 1.2 2.2 30 1.4 2.2 30 05 3-2-1 
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Appendix 6-B: Table detailing the results from the experiment in Section 6.1 where 

Obs1, Obs2 and Obs3 are the rank in which each observer ordered the surfaces, one 

being the roughest, two the surface with the middle perceived roughness and three the 

smoothest surface.   

 
 
No Trial σ1 β1 θ1 σ2 β2 θ2 σ3 β3 θ3 Obs1 Obs2 Obs3 

1 1 0.6 1.8 25 0.8 1.8 25 1.0 1.8 25 3-2-1 3-2-1 3-2-1 
2 1 0.6 1.8 25 0.8 1.8 25 1.2 1.8 25 3-2-1 3-2-1 3-2-1 
3 1 0.6 1.8 25 0.8 1.8 25 1.4 18 25 3-2-1 3-2-1 3-2-1 
4 1 0.6 1.8 25 1.0 1.8 25 1.2 1.8 25 3-2-1 3-2-1 3-2-1 
5 1 0.6 1.8 25 1.0 1.8 25 1.4 1.8 25 3-2-1 3-2-1 3-2-1 
6 1 0.6 1.8 25 1.2 1.8 25 1.4 1.8 25 3-2-1 3-2-1 3-2-1 
7 1 0.8 1.8 25 1.0 1.8 25 1.2 1.8 25 3-2-1 3-2-1 3-2-1 
8 1 0.8 1.8 25 1.0 1.8 25 1.4 1.8 25 3-2-1 3-2-1 3-2-1 
9 1 0.8 1.8 25 1.2 1.8 25 1.4 1.8 25 3-2-1 3-2-1 3-2-1 

10 1 1.0 1.8 25 1.2 1.8 25 1.4 1.8 25 3-2-1 3-2-1 3-2-1 
11 2 0.6 2.2 30 0.8 2.2 30 1.0 2.2 30 3-2-1 3-2-1 3-2-1 
12 2 0.6 2.2 30 0.8 2.2 30 1.2 2.2 30 3-2-1 3-2-1 3-2-1 
13 2 0.6 2.2 30 0.8 2.2 30 1.4 2.2 30 3-2-1 3-2-1 3-2-1 
14 2 0.6 2.2 30 1.0 2.2 30 1.2 2.2 30 3-2-1 3-2-1 3-2-1 
15 2 0.6 2.2 30 1.0 2.2 30 1.4 2.2 30 3-2-1 3-2-1 3-2-1 
16 2 0.6 2.2 30 1.2 2.2 30 1.4 2.2 30 3-2-1 3-2-1 3-2-1 
17 2 0.8 2.2 30 1.0 2.2 30 1.2 2.2 30 3-2-1 3-2-1 3-2-1 
18 2 0.8 2.2 30 1.0 2.2 30 1.4 2.2 30 3-2-1 3-2-1 3-2-1 
19 2 0.8 2.2 30 1.2 2.2 30 1.4 2.2 30 3-2-1 3-2-1 3-2-1 
20 2 1.0 2.2 30 1.2 2.2 30 1.4 2.2 30 3-2-1 3-2-1 3-2-1 
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Appendix 6-C: Table detailing the variables from the category scaling experiments 

described in Section 6.2, the column description is as Appendix 6-A. 

 
 

No Trial σ1 β1 θ1 σ2 β2 θ2 σ3 β3 θ3 
Order 

No 
Row 

Order 
01 1 0.8 1.7 20 0.8 1.8 20 0.8 1.9 20 33 1-3-2 
02 1 0.8 1.7 20 0.8 1.8 20 0.8 2.0 20 08 1-2-3 
03 1 0.8 1.7 20 0.8 1.8 20 0.8 2.1 20 28 3-2-1 
04 1 0.8 1.7 20 0.8 1.8 20 0.8 2.2 20 43 2-1-3 
05 1 0.8 1.7 20 0.8 1.9 20 0.8 2.0 20 25 3-2-1 
06 1 0.8 1.7 20 0.8 1.9 20 0.8 2.1 20 15 3-1-2 
07 1 0.8 1.7 20 0.8 1.9 20 0.8 2.2 20 19 3-2-1 
08 1 0.8 1.7 20 0.8 2.0 20 0.8 2.1 20 12 1-2-3 
09 1 0.8 1.7 20 0.8 2.0 20 0.8 2.2 20 26 1-2-3 
10 1 0.8 1.7 20 0.8 2.1 20 0.8 2.2 20 38 1-3-2 
11 1 0.8 1.8 20 0.8 1.9 20 0.8 2.0 20 16 3-2-1 
12 1 0.8 1.8 20 0.8 1.9 20 0.8 2.1 20 34 3-1-2 
13 1 0.8 1.8 20 0.8 1.9 20 0.8 2.2 20 11 3-2-1 
14 1 0.8 1.8 20 0.8 2.0 20 0.8 2.1 20 35 1-2-3 
15 1 0.8 1.8 20 0.8 2.0 20 0.8 2.2 20 14 2-3-1 
16 1 0.8 1.8 20 0.8 2.1 20 0.8 2.2 20 45 3-2-1 
17 1 0.8 1.9 20 0.8 2.0 20 0.8 2.1 20 24 1-2-3 
18 1 0.8 1.9 20 0.8 2.0 20 0.8 2.2 20 36 1-2-3 
19 1 0.8 1.9 20 0.8 2.1 20 0.8 2.2 20 18 3-2-1 
20 1 0.8 2.0 20 0.8 2.1 20 0.8 2.2 20 37 1-2-3 
21 2 1.2 1.7 35 1.2 1.8 35 1.2 1.9 35 10 1-3-2 
22 2 1.2 1.7 35 1.2 1.8 35 1.2 2.0 35 21 1-2-3 
23 2 1.2 1.7 35 1.2 1.8 35 1.2 2.1 35 40 3-2-1 
24 2 1.2 1.7 35 1.2 1.8 35 1.2 2.2 35 23 2-1-3 
25 2 1.2 1.7 35 1.2 1.9 35 1.2 2.0 35 32 3-2-1 
26 2 1.2 1.7 35 1.2 1.9 35 1.2 2.1 35 42 3-1-2 
27 2 1.2 1.7 35 1.2 1.9 35 1.2 2.2 35 22 3-2-1 
28 2 1.2 1.7 35 1.2 2.0 35 1.2 2.1 35 27 1-2-3 
29 2 1.2 1.7 35 1.2 2.0 35 1.2 2.2 35 17 1-3-2 
30 2 1.2 1.7 35 1.2 2.1 35 1.2 2.2 35 13 1-3-2 
31 2 1.2 1.8 35 1.2 1.9 35 1.2 2.0 35 39 3-2-1 
32 2 1.2 1.8 35 1.2 1.9 35 1.2 2.1 35 41 3-1-2 
33 2 1.2 1.8 35 1.2 1.9 35 1.2 2.2 35 07 3-2-1 
34 2 1.2 1.8 35 1.2 2.0 35 1.2 2.1 35 6 1-2-3 
35 2 1.2 1.8 35 1.2 2.0 35 1.2 2.2 35 20 2-3-1 
36 2 1.2 1.8 35 1.2 2.1 35 1.2 2.2 35 09 3-2-1 
37 2 1.2 1.9 35 1.2 2.0 35 1.2 2.1 35 44 1-2-3 
38 2 1.2 1.9 35 1.2 2.0 35 1.2 2.2 35 30 1-3-2 
39 2 1.2 1.9 35 1.2 2.1 35 1.2 2.2 35 29 3-2-1 
40 2 1.2 2.0 35 1.2 2.1 35 1.2 2.2 35 31 1-2-3 
41 Practice 0.8 1.9 20 0.8 2.0 20 0.8 2.2 20 01 1-2-3 
42 Practice 0.8 1.9 20 0.8 2.1 20 0.8 2.2 20 02 3-2-1 
43 Practice 0.8 2.0 20 0.8 2.1 20 0.8 2.2 20 03 1-2-3 
44 Practice 1.2 1.7 35 1.2 1.8 35 1.2 1.9 35 04 1-2-3 
45 Practice 1.2 1.7 35 1.2 1.8 35 1.2 2.0 35 05 3-2-1 
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Appendix 6-D: Table detailing the results from the category scaling experiments 

described in Section 6.2, where Obs1, Obs2 and Obs3 are the rank in which each 

observer ordered the surfaces, one being the roughest, two the surface with the middle 

perceived roughness and three the smoothest surface.   

 
 
No Trial σ1 β1 θ1 σ2 β2 θ2 σ3 β3 θ3 Obs1 Obs2 Obs3 

01 1 0.8 1.7 20 0.8 1.8 20 0.8 1.9 20 2-1-3 1-2-3 2-1-3 
02 1 0.8 1.7 20 0.8 1.8 20 0.8 2.0 20 1-2-3 1-2-3 1-2-3 
03 1 0.8 1.7 20 0.8 1.8 20 0.8 2.1 20 1-2-3 1-2-3 1-2-3 
04 1 0.8 1.7 20 0.8 1.8 20 0.8 2.2 20 1-2-3 1-2-3 1-2-3 
05 1 0.8 1.7 20 0.8 1.9 20 0.8 2.0 20 1-2-3 1-2-3 1-2-3 
06 1 0.8 1.7 20 0.8 1.9 20 0.8 2.1 20 1-2-3 1-2-3 1-2-3 
07 1 0.8 1.7 20 0.8 1.9 20 0.8 2.2 20 1-2-3 1-2-3 1-2-3 
08 1 0.8 1.7 20 0.8 2.0 20 0.8 2.1 20 1-2-3 1-2-3 1-2-3 
09 1 0.8 1.7 20 0.8 2.0 20 0.8 2.2 20 1-2-3 2-3-1 1-2-3 
10 1 0.8 1.7 20 0.8 2.1 20 0.8 2.2 20 1-2-3 1-2-3 1-2-3 
11 1 0.8 1.8 20 0.8 1.9 20 0.8 2.0 20 1-2-3 1-2-3 1-2-3 
12 1 0.8 1.8 20 0.8 1.9 20 0.8 2.1 20 1-2-3 1-2-3 1-2-3 
13 1 0.8 1.8 20 0.8 1.9 20 0.8 2.2 20 1-2-3 1-2-3 1-2-3 
14 1 0.8 1.8 20 0.8 2.0 20 0.8 2.1 20 1-2-3 1-2-3 1-2-3 
15 1 0.8 1.8 20 0.8 2.0 20 0.8 2.2 20 1-2-3 1-2-3 1-2-3 
16 1 0.8 1.8 20 0.8 2.1 20 0.8 2.2 20 1-2-3 2-1-3 1-2-3 
17 1 0.8 1.9 20 0.8 2.0 20 0.8 2.1 20 1-2-3 1-2-3 1-2-3 
18 1 0.8 1.9 20 0.8 2.0 20 0.8 2.2 20 1-2-3 1-2-3 1-2-3 
19 1 0.8 1.9 20 0.8 2.1 20 0.8 2.2 20 1-2-3 1-2-3 1-2-3 
20 1 0.8 2.0 20 0.8 2.1 20 0.8 2.2 20 1-2-3 1-2-3 1-2-3 
21 2 1.2 1.7 35 1.2 1.8 35 1.2 1.9 35 1-2-3 1-2-3 1-2-3 
22 2 1.2 1.7 35 1.2 1.8 35 1.2 2.0 35 1-2-3 1-2-3 1-2-3 
23 2 1.2 1.7 35 1.2 1.8 35 1.2 2.1 35 1-2-3 1-2-3 2-1-3 
24 2 1.2 1.7 35 1.2 1.8 35 1.2 2.2 35 1-2-3 1-2-3 1-2-3 
25 2 1.2 1.7 35 1.2 1.9 35 1.2 2.0 35 1-2-3 1-2-3 1-2-3 
26 2 1.2 1.7 35 1.2 1.9 35 1.2 2.1 35 1-2-3 1-2-3 1-2-3 
27 2 1.2 1.7 35 1.2 1.9 35 1.2 2.2 35 1-2-3 1-2-3 1-2-3 
28 2 1.2 1.7 35 1.2 2.0 35 1.2 2.1 35 1-2-3 1-2-3 1-2-3 
29 2 1.2 1.7 35 1.2 2.0 35 1.2 2.2 35 1-2-3 1-2-3 1-2-3 
30 2 1.2 1.7 35 1.2 2.1 35 1.2 2.2 35 1-2-3 1-2-3 1-2-3 
31 2 1.2 1.8 35 1.2 1.9 35 1.2 2.0 35 1-2-3 1-2-3 1-2-3 
32 2 1.2 1.8 35 1.2 1.9 35 1.2 2.1 35 1-2-3 1-2-3 1-2-3 
33 2 1.2 1.8 35 1.2 1.9 35 1.2 2.2 35 1-2-3 1-2-3 1-2-3 
34 2 1.2 1.8 35 1.2 2.0 35 1.2 2.1 35 1-2-3 1-2-3 1-2-3 
35 2 1.2 1.8 35 1.2 2.0 35 1.2 2.2 35 1-2-3 1-2-3 1-2-3 
36 2 1.2 1.8 35 1.2 2.1 35 1.2 2.2 35 1-2-3 1-2-3 1-2-3 
37 2 1.2 1.9 35 1.2 2.0 35 1.2 2.1 35 1-2-3 1-2-3 1-2-3 
38 2 1.2 1.9 35 1.2 2.0 35 1.2 2.2 35 1-2-3 1-2-3 1-2-3 
39 2 1.2 1.9 35 1.2 2.1 35 1.2 2.2 35 1-2-3 1-2-3 1-2-3 
40 2 1.2 2.0 35 1.2 2.1 35 1.2 2.2 35 1-2-3 1-2-3 1-2-3 
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Appendix 6-E: Table detailing the order and parameters from the values of the 

experiment described in Section 6.3.  

 

 
No Trial βref  θref σref βadj θadj σadj Order 

01 1 2.0 05 0.4 2.0 25  16 
02 1 2.0 12 0.6 2.0 32  23 
03 1 2.0 45 0.8 2.0 65  26 
04 1 2.0 41 1.0 2.0 61  29 
05 1 2.0 14 1.2 2.0 34  30 
06 2 2.0 05 0.4 2.0 25  11 
07 2 2.0 12 0.6 2.0 32  20 
08 2 2.0 45 0.8 2.0 65  06 
09 2 2.0 41 1.0 2.0 61  08 
10 2 2.0 14 1.2 2.0 34  21 
11 3 2.0 05 0.4 2.0 25  22 
12 3 2.0 12 0.6 2.0 32  28 
13 3 2.0 45 0.8 2.0 65  27 
14 3 2.0 41 1.0 2.0 61  14 
15 3 2.0 14 1.2 2.0 34  09 
16 4 2.0 05 0.4 2.0 25  17 
17 4 2.0 12 0.6 2.0 32  07 
18 4 2.0 45 0.8 2.0 65  25 
19 4 2.0 41 1.0 2.0 61  12 
20 4 2.0 14 1.2 2.0 34  19 
21 5 2.0 05 0.4 2.0 25  24 
22 5 2.0 12 0.6 2.0 32  15 
23 5 2.0 45 0.8 2.0 65  18 
24 5 2.0 41 1.0 2.0 61  13 
25 5 2.0 14 1.2 2.0 34  10 
26 Practice 2.0 41 1.0 2.0 61  01 
27 Practice 2.0 14 1.2 2.0 34  02 
28 Practice 2.0 05 0.4 2.0 25  03 
29 Practice 2.0 14 1.2 2.0 34  04 
30 Practice 2.0 05 0.4 2.0 25  05 
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Appendix 6-F: Table detailing the order and parameters from the values of the 

experiment described in Section 6.3.  

 

 
No θref σref θadj σ1adj σ2adj σ3adj σ4adj σ5adj σ6adj σ7adj σ8adj σ9adj σ10adj 

01 5 0.4 25 0.45 0.32 0.43 0.43 0.43 0.50 0.45 0.44 0.32 0.43 
02 12 0.6 32 0.79 0.53 0.62 0.57 0.57 0.60 0.61 0.59 0.53 0.61 
03 45 0.8 65 0.89 0.80 0.71 0.76 0.76 0.76 0.99 0.79 0.95 0.73 
04 41 1 61 1.14 1.01 1.09 1.10 1.21 1.20 1.08 1.07 1.14 1.08 
05 14 1.2 34 1.10 1.12 1.18 1.27 0.78 1.10 1.28 1.29 1.30 1.21 
06 5 0.4 25 0.48 0.38 0.55 0.49 0.49 0.33 0.27 0.49 0.50 0.53 
07 12 0.6 32 0.67 0.81 0.62 0.71 0.54 0.74 0.49 0.71 0.69 0.64 
08 45 0.8 65 0.91 0.92 0.82 0.79 1.17 0.85 0.55 0.70 0.78 0.78 
09 41 1 61 1.16 1.01 1.09 0.90 0.85 1.20 1.06 1.07 1.22 1.08 
10 14 1.2 34 1.48 1.36 1.46 1.56 1.00 1.28 1.09 1.39 1.58 1.44 
11 5 0.4 25 0.49 0.37 0.55 0.43 0.43 0.47 0.61 0.34 0.50 0.49 
12 12 0.6 32 0.64 0.59 0.62 0.58 0.58 0.80 0.54 0.61 0.65 0.62 
13 45 0.8 65 0.69 0.87 0.48 0.92 0.92 0.46 0.70 0.65 0.81 0.53 
14 41 1 61 1.14 1.17 1.20 1.17 1.04 1.19 1.17 1.05 1.16 1.16 
15 14 1.2 34 1.37 1.43 1.12 0.97 0.97 0.98 0.97 0.91 1.29 1.06 
16 5 0.4 25 0.51 0.59 0.59 0.41 0.73 0.71 0.42 0.57 0.75 0.58 
17 12 0.6 32 0.97 0.78 0.80 0.88 0.88 0.42 0.63 0.74 0.69 0.78 
18 45 0.8 65 1.03 0.98 0.72 0.73 0.73 1.02 0.87 1.19 0.85 0.86 
19 41 1 61 1.17 1.33 1.19 1.00 1.00 1.17 1.10 1.12 1.22 1.17 
20 14 1.2 34 1.31 1.37 1.36 1.58 1.29 1.23 1.32 1.12 1.31 1.29 
21 5 0.4 25 0.40 0.50 0.53 0.48 0.40 0.61 0.25 0.50 0.36 0.52 
22 12 0.6 32 0.80 0.45 0.77 0.57 0.70 0.65 0.35 0.54 0.66 0.70 
23 45 0.8 65 0.78 0.79 0.80 0.82 0.82 0.79 0.62 0.83 1.04 0.81 
24 41 1 61 0.95 1.06 0.92 1.02 1.14 0.98 0.83 1.05 1.10 0.96 
25 14 1.2 34 1.32 1.32 1.37 1.31 1.31 1.39 1.16 1.40 1.91 1.38 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 
140 

Appendix 6-G: Table detailing the order and parameters from the values of the 

experiment described in Section 6.4, where ref is the parameters from the reference 

surfaces and adj are the parameters from the adjustable surface.  

 
No Trial βref θref σref βadj θadj σadj Order 

01 1 2.0 01 0.40 1.7 21  078 
02 1 2.0 01 0.40 1.8 21  088 
03 1 2.0 01 0.40 1.9 21  094 
04 1 2.0 01 0.40 2.0 21  100 
05 1 2.0 01 0.40 2.1 21  015 
06 1 2.0 01 0.40 2.2 21  062 
07 1 2.0 01 0.40 2.3 21  105 
08 1 2.0 02 0.60 1.7 22  089 
09 1 2.0 02 0.60 1.8 22  042 
10 1 2.0 02 0.60 1.9 22  016 
11 1 2.0 02 0.60 2.0 22  044 
12 1 2.0 02 0.60 2.1 22  007 
13 1 2.0 02 0.60 2.2 22  093 
14 1 2.0 02 0.60 2.3 22  049 
15 1 2.0 03 0.80 1.7 23  034 
16 1 2.0 03 0.80 1.8 23  060 
17 1 2.0 03 0.80 1.9 23  014 
18 1 2.0 03 0.80 2.0 23  074 
19 1 2.0 03 0.80 2.1 23  059 
20 1 2.0 03 0.80 2.2 23  085 
21 1 2.0 03 0.80 2.3 23  092 
22 1 2.0 04 1.00 1.7 24  110 
23 1 2.0 04 1.00 1.8 24  076 
24 1 2.0 04 1.00 1.9 24  083 
25 1 2.0 04 1.00 2.0 24  069 
26 1 2.0 04 1.00 2.1 24  053 
27 1 2.0 04 1.00 2.2 24  101 
28 1 2.0 04 1.00 2.3 24  065 
29 1 2.0 05 1.20 1.7 25  075 
30 1 2.0 05 1.20 1.8 25  019 
31 1 2.0 05 1.20 1.9 25  024 
32 1 2.0 05 1.20 2.0 25  051 
33 1 2.0 05 1.20 2.1 25  061 
34 1 2.0 05 1.20 2.2 25  073 
35 1 2.0 05 1.20 2.3 25  057 
36 2 2.0 06 0.40 1.7 26  023 
37 2 2.0 06 0.40 1.8 26  082 
38 2 2.0 06 0.40 1.9 26  035 
39 2 2.0 06 0.40 2.0 26  008 
40 2 2.0 06 0.40 2.1 26  010 
41 2 2.0 06 0.40 2.2 26  040 
42 2 2.0 06 0.40 2.3 26  108 
43 2 2.0 07 0.60 1.7 27  072 
44 2 2.0 07 0.60 1.8 27  029 
45 2 2.0 07 0.60 1.9 27  041 
46 2 2.0 07 0.60 2.0 27  037 
47 2 2.0 07 0.60 2.1 27  052 
48 2 2.0 07 0.60 2.2 27  018 
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49 2 2.0 07 0.60 2.3 27  071 
50 2 2.0 08 0.80 1.7 28  080 
51 2 2.0 08 0.80 1.8 28  109 
52 2 2.0 08 0.80 1.9 28  097 
53 2 2.0 08 0.80 2.0 28  086 
54 2 2.0 08 0.80 2.1 28  087 
55 2 2.0 08 0.80 2.2 28  058 
56 2 2.0 08 0.80 2.3 28  055 
57 2 2.0 09 1.00 1.7 29  046 
58 2 2.0 09 1.00 1.8 29  098 
59 2 2.0 09 1.00 1.9 29  022 
60 2 2.0 09 1.00 2.0 29  021 
61 2 2.0 09 1.00 2.1 29  067 
62 2 2.0 09 1.00 2.2 29  096 
63 2 2.0 09 1.00 2.3 29  047 
64 2 2.0 10 1.20 1.7 30  091 
65 2 2.0 10 1.20 1.8 30  009 
66 2 2.0 10 1.20 1.9 30  102 
67 2 2.0 10 1.20 2.0 30  106 
68 2 2.0 10 1.20 2.1 30  032 
69 2 2.0 10 1.20 2.2 30  027 
70 2 2.0 10 1.20 2.3 30  063 
71 3 2.0 11 0.40 1.7 31  033 
72 3 2.0 11 0.40 1.8 31  012 
73 3 2.0 11 0.40 1.9 31  036 
74 3 2.0 11 0.40 2.0 31  028 
75 3 2.0 11 0.40 2.1 31  038 
76 3 2.0 11 0.40 2.2 31  103 
77 3 2.0 11 0.40 2.3 31  020 
78 3 2.0 12 0.60 1.7 32  077 
79 3 2.0 12 0.60 1.8 32  031 
80 3 2.0 12 0.60 1.9 32  068 
81 3 2.0 12 0.60 2.0 32  048 
82 3 2.0 12 0.60 2.1 32  039 
83 3 2.0 12 0.60 2.2 32  084 
84 3 2.0 12 0.60 2.3 32  070 
85 3 2.0 13 0.80 1.7 33  099 
86 3 2.0 13 0.80 1.8 33  043 
87 3 2.0 13 0.80 1.9 33  064 
88 3 2.0 13 0.80 2.0 33  045 
89 3 2.0 13 0.80 2.1 33  079 
90 3 2.0 13 0.80 2.2 33  095 
91 3 2.0 13 0.80 2.3 33  026 
92 3 2.0 14 1.00 1.7 34  050 
93 3 2.0 14 1.00 1.8 34  090 
94 3 2.0 14 1.00 1.9 34  054 
95 3 2.0 14 1.00 2.0 34  025 
96 3 2.0 14 1.00 2.1 34  104 
97 3 2.0 14 1.00 2.2 34  017 
98 3 2.0 14 1.00 2.3 34  056 
99 3 2.0 15 1.20 1.7 35  107 
100 3 2.0 15 1.20 1.8 35  030 
101 3 2.0 15 1.20 1.9 35  066 
102 3 2.0 15 1.20 2.0 35  006 
103 3 2.0 15 1.20 2.1 35  081 



  

 
142 

104 3 2.0 15 1.20 2.2 35  013 
105 3 2.0 15 1.20 2.3 35  011 
106 Practice 2.0 12 0.60 1.9 32  001 
107 Practice 2.0 06 0.40 2.0 26  002 
108 Practice 2.0 09 1.00 2.3 29  003 
109 Practice 2.0 13 0.80 1.7 33  004 
110 Practice 2.0 15 1.20 2.3 35  005 

 
 
 
 
 
Appendix 6-H: Table detailing each of the observations from the ten observers in the 

experiment of Section 6-4.  

 
No σref σ1adj σ2adj σ3adj σ4adj σ5adj σ6adj σ7adj σ8adj σ9adj σ10adj

01 0.40 0.178 0.225 0.090 0.152 0.258 0.211 0.263 0.200 0.229 0.123 
02 0.40 0.255 0.304 0.274 0.252 0.290 0.227 0.258 0.260 0.244 0.270 
03 0.40 0.359 0.303 0.343 0.328 0.462 0.562 0.274 0.326 0.419 0.338 
04 0.40 0.446 0.319 0.428 0.427 0.427 0.496 0.449 0.441 0.316 0.432 
05 0.40 0.696 0.559 0.430 0.506 0.547 0.757 0.326 0.505 0.608 0.452 
06 0.40 0.907 0.478 0.462 0.965 0.965 0.662 0.422 0.765 0.343 0.553 
07 0.40 1.468 0.533 0.798 0.884 0.440 1.535 0.828 1.212 0.703 0.922 
08 0.60 0.211 0.272 0.191 0.175 0.413 0.344 0.307 0.269 0.286 0.214 
09 0.60 0.334 0.379 0.300 0.299 0.498 0.371 0.350 0.299 0.405 0.300 
10 0.60 0.438 0.510 0.547 0.444 0.444 0.373 0.532 0.626 0.470 0.571 
11 0.60 0.788 0.530 0.617 0.566 0.566 0.597 0.612 0.587 0.527 0.608 
12 0.60 0.976 0.874 0.668 0.828 0.685 0.698 0.544 0.810 0.905 0.711 
13 0.60 1.359 1.065 0.857 1.254 0.597 1.449 0.724 1.351 0.828 1.005 
14 0.60 1.993 0.732 0.617 1.767 1.767 1.320 0.783 1.185 0.845 0.788 
15 0.80 0.303 0.396 0.286 0.365 0.624 0.335 0.313 0.247 0.291 0.274 
16 0.80 0.510 0.575 0.370 0.347 0.347 0.391 0.599 0.569 0.605 0.429 
17 0.80 0.610 0.715 0.533 0.728 0.773 0.635 0.728 0.775 0.483 0.606 
18 0.80 0.886 0.800 0.711 0.765 0.765 0.759 0.989 0.790 0.948 0.735 
19 0.80 1.135 1.000 0.922 1.063 1.063 0.939 0.646 0.943 1.188 0.928 
20 0.80 1.603 1.086 1.546 1.482 1.038 1.606 0.941 1.422 0.857 1.509 
21 0.80 2.661 1.767 2.669 2.020 1.302 2.381 1.234 2.569 1.433 2.639 
22 1.00 0.319 0.675 0.430 0.592 0.592 0.329 0.585 0.306 0.350 0.393 
23 1.00 0.585 0.559 0.615 0.802 0.784 0.335 0.662 0.550 0.635 0.596 
24 1.00 0.812 0.767 0.700 0.763 0.948 0.779 0.798 0.666 1.075 0.690 
25 1.00 1.142 1.007 1.088 1.095 1.210 1.202 1.084 1.070 1.137 1.083 
26 1.00 1.572 0.818 1.229 1.200 1.200 1.406 1.173 1.317 1.084 1.256 
27 1.00 2.160 1.119 1.279 1.782 1.782 1.612 1.244 1.455 1.706 1.332 
28 1.00 2.645 1.485 1.721 2.174 1.154 2.441 1.292 2.569 1.973 1.975 
29 1.20 0.470 0.835 0.435 0.612 0.612 0.402 0.711 0.386 0.465 0.420 
30 1.20 0.578 0.790 0.500 0.843 0.749 0.672 0.520 0.550 0.508 0.515 
31 1.20 0.937 0.771 0.987 1.031 1.031 0.806 0.952 0.775 0.920 0.923 
32 1.20 1.105 1.116 1.183 1.267 0.779 1.105 1.284 1.287 1.300 1.214 
33 1.20 1.870 1.325 1.468 1.794 1.794 1.908 1.404 1.535 1.493 1.488 
34 1.20 2.518 1.886 2.010 1.764 0.918 2.156 2.665 2.118 1.650 2.042 
35 1.20 2.641 1.289 2.199 1.895 2.267 2.645 2.625 2.514 1.876 2.293 
36 0.40 0.258 0.280 0.245 0.126 0.386 0.227 0.191 0.157 0.202 0.219 
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37 0.40 0.313 0.316 0.376 0.206 0.206 0.353 0.413 0.306 0.289 0.355 
38 0.40 0.297 0.459 0.353 0.273 0.273 0.433 0.296 0.411 0.302 0.370 
39 0.40 0.482 0.377 0.554 0.490 0.490 0.328 0.272 0.490 0.498 0.535 
40 0.40 0.633 0.587 0.642 0.552 0.596 0.922 0.617 0.702 0.589 0.660 
41 0.40 0.930 0.525 1.020 0.755 0.406 0.865 0.520 0.892 0.542 0.982 
42 0.40 1.736 0.928 1.135 1.257 0.661 1.294 0.814 1.135 0.688 1.135 
43 0.60 0.273 0.256 0.182 0.202 0.202 0.290 0.340 0.249 0.380 0.202 
44 0.60 0.343 0.376 0.329 0.376 0.376 0.363 0.475 0.425 0.495 0.358 
45 0.60 0.511 0.452 0.462 0.440 0.440 0.496 0.451 0.537 0.719 0.484 
46 0.60 0.670 0.814 0.615 0.711 0.538 0.736 0.495 0.705 0.688 0.642 
47 0.60 1.173 0.677 0.892 0.824 0.692 1.018 0.646 0.933 0.899 0.904 
48 0.60 1.623 0.863 0.720 1.482 0.661 1.618 1.011 1.183 0.833 0.859 
49 0.60 2.601 0.911 0.622 1.526 1.526 1.791 0.851 1.886 1.535 1.001 
50 0.80 0.206 0.443 0.272 0.389 0.786 0.258 0.354 0.312 0.319 0.284 
51 0.80 0.451 0.711 0.477 0.470 0.470 0.334 0.473 0.571 0.759 0.505 
52 0.80 0.613 0.740 0.646 0.810 0.788 0.728 0.601 0.428 0.648 0.581 
53 0.80 0.911 0.918 0.822 0.792 1.173 0.853 0.550 0.696 0.783 0.784 
54 0.80 1.098 1.029 1.164 1.312 1.130 1.232 0.913 1.040 1.200 1.127 
55 0.80 1.963 1.025 1.007 2.033 2.033 1.927 0.892 1.560 1.168 1.173 
56 0.80 2.553 1.398 1.679 1.538 1.049 2.303 1.422 2.625 1.873 1.963 
57 1.00 0.320 0.610 0.424 0.312 0.312 0.452 0.587 0.379 0.440 0.410 
58 1.00 0.556 0.661 0.624 0.501 0.501 0.685 0.761 0.626 0.587 0.625 
59 1.00 0.869 1.065 0.757 0.631 0.631 0.786 0.903 1.061 0.939 0.848 
60 1.00 1.159 1.007 1.088 0.901 0.847 1.202 1.058 1.070 1.217 1.083 
61 1.00 2.167 1.200 1.077 1.770 1.770 1.595 0.989 1.166 1.219 1.104 
62 1.00 2.569 1.586 2.000 1.460 1.346 1.706 1.367 2.016 2.040 2.005 
63 1.00 2.629 1.338 2.023 2.355 2.355 2.645 1.569 2.593 1.396 2.194 
64 1.20 0.410 0.703 0.389 0.812 0.740 0.408 0.633 0.402 0.403 0.393 
65 1.20 0.619 0.677 0.610 0.719 0.747 0.559 0.755 0.571 0.769 0.598 
66 1.20 1.133 1.210 0.935 1.105 1.105 1.043 0.855 1.181 1.380 1.008 
67 1.20 1.485 1.356 1.458 1.557 1.000 1.279 1.093 1.393 1.580 1.438 
68 1.20 2.026 1.529 1.661 2.388 2.388 1.618 1.609 1.944 1.761 1.746 
69 1.20 2.318 1.600 2.053 2.366 2.366 2.514 2.565 2.653 2.263 2.233 
70 1.20 2.585 2.321 1.905 2.046 1.333 2.538 2.216 2.526 2.581 2.091 
71 0.40 0.221 0.270 0.238 0.117 0.117 0.316 0.363 0.125 0.190 0.204 
72 0.40 0.177 0.238 0.258 0.215 0.215 0.304 0.267 0.344 0.262 0.284 
73 0.40 0.408 0.344 0.477 0.263 0.427 0.416 0.516 0.389 0.457 0.450 
74 0.40 0.493 0.370 0.552 0.433 0.433 0.469 0.613 0.341 0.498 0.489 
75 0.40 0.810 0.300 0.631 0.527 0.527 0.603 0.554 0.612 0.438 0.625 
76 0.40 1.061 0.496 0.749 0.673 0.562 0.926 0.417 0.872 0.657 0.786 
77 0.40 1.244 0.783 1.038 1.036 0.569 1.623 0.403 1.217 0.617 1.092 
78 0.60 0.245 0.283 0.258 0.210 0.210 0.371 0.568 0.419 0.380 0.306 
79 0.60 0.334 0.391 0.289 0.341 0.462 0.315 0.485 0.289 0.459 0.289 
80 0.60 0.400 0.542 0.379 0.513 0.513 0.462 0.550 0.516 0.582 0.420 
81 0.60 0.637 0.589 0.619 0.580 0.580 0.802 0.535 0.613 0.653 0.617 
82 0.60 1.020 0.786 0.664 0.958 0.659 1.264 0.826 0.974 0.608 0.757 
83 0.60 2.057 0.800 1.107 1.190 0.828 1.284 0.626 1.121 1.193 1.111 
84 0.60 1.751 0.781 0.679 1.937 1.937 1.825 1.526 2.657 1.615 1.272 
85 0.80 0.258 0.388 0.263 0.302 0.657 0.338 0.280 0.284 0.316 0.270 
86 0.80 0.485 0.792 0.402 0.435 0.435 0.475 0.590 0.430 0.571 0.410 
87 0.80 0.508 1.107 0.631 0.515 0.515 0.603 0.757 0.657 0.828 0.639 
88 0.80 0.692 0.865 0.483 0.918 0.918 0.462 0.700 0.651 0.808 0.534 
89 0.80 1.123 0.996 0.631 1.112 1.112 1.404 1.065 1.317 1.040 0.837 
90 0.80 1.970 1.284 1.606 1.351 1.351 1.546 0.890 1.650 1.385 1.619 
91 0.80 2.314 1.114 1.552 1.471 1.471 1.566 1.595 1.422 1.927 1.513 
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92 1.00 0.255 0.728 0.383 0.521 1.154 0.405 0.467 0.368 0.316 0.379 
93 1.00 0.388 0.749 0.362 0.478 1.388 0.545 0.800 0.505 0.490 0.405 
94 1.00 1.018 0.928 0.722 0.899 1.058 0.920 1.269 0.761 0.872 0.734 
95 1.00 1.145 1.166 1.202 1.173 1.038 1.185 1.171 1.052 1.164 1.157 
96 1.00 1.976 1.323 1.455 1.526 1.436 1.986 1.205 1.767 1.721 1.548 
97 1.00 2.613 1.892 2.609 1.822 1.224 1.860 1.953 2.355 2.163 2.533 
98 1.00 2.581 1.876 2.593 1.471 1.905 2.609 2.347 2.625 2.177 2.602 
99 1.20 0.422 0.897 0.470 0.382 0.963 0.475 0.711 0.359 0.424 0.437 

100 1.20 0.477 0.812 0.633 0.585 0.916 0.608 1.070 0.596 0.464 0.622 
101 1.20 0.950 1.436 1.137 0.890 0.890 1.145 0.713 0.831 0.816 1.045 
102 1.20 1.367 1.433 1.121 0.971 0.971 0.985 0.974 0.907 1.289 1.057 
103 1.20 2.139 1.335 1.580 1.529 1.529 1.430 1.788 2.010 1.289 1.709 
104 1.20 2.437 1.333 2.318 1.879 1.879 2.329 1.287 2.128 2.483 2.261 
105 1.20 2.422 1.700 2.238 2.111 2.111 2.629 2.605 2.665 2.633 2.366 
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Appendix 6-I: Fitting values from the exponential and power regressions in experiment 

described in Section 6.4.   

 
Reference a b Formula r2 

0.4 cm 0.003392 2.437990 y(x) = 0.0034  · e2.438 0.737 
0.6 cm 0.003455 2.593581 y(x) = 0.0035  · e2.594 0.787 
0.8 cm 0.003597 2.702676 y(x) = 0.0036  · e2.703 0.831 
1.0 cm 0.005418 2.622859 y(x) = 0.0054  · e2.623 0.821 
1.2 cm 0.006657 2.590088 y(x) = 0.0067  · e2.590 0.837 

     
0.4 cm 0.015755 4.851408 y(x) = 0.0156 · 104.851 0.740 
0.6 cm 0.01771 5.160099 y(x) = 0.0177 · 105.160 0.790 
0.8 cm 0.019793 5.373799 y(x) = 0.0198 · 105.374 0.834 
1.0 cm 0.028046 5.230737 y(x) = 0.0280 · 106.230 0.828 
1.2 cm 0.012138 4.476331 y(x) = 0.0121 · 104.476 0.846 

 
 
 
 
Appendix 6-J: Slopes of the iso-roughness lines from the experiment described in 

Section 6.4.   

 
Observer Reference 0.4 Reference 0.6 Reference 0.8 Reference 1.0 Reference 1.2 Mean 

1 1.4295 1.6297 1.5869 1.6200 1.3897 1.5311
2 0.6973 0.8430 0.7567 0.6768 0.6183 0.7184
3 1.1290 0.9247 1.3316 1.2380 1.2105 1.1668
4 1.4539 1.5334 1.2273 1.1117 1.0007 1.2654
5 0.7653 1.0805 0.7407 0.7501 0.7272 0.8128
6 1.2233 1.3004 1.4223 1.3643 1.3349 1.3290
7 0.5903 0.6614 0.8859 0.7658 1.0132 0.7833
8 1.3309 1.3074 1.3734 1.3976 1.4233 1.3665
9 0.7944 0.8832 1.0645 1.1806 1.2558 1.0357

10 1.1743 1.1001 1.3483 1.2862 1.2751 1.2368
All 1.0588 1.1264 1.1738 1.1391 1.1249 1.1246
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Appendix 6-K: Fittings from observer number one where the change in the slope of the 

fittings is more than 1.0. 

 

 

 
 
 
Appendix 6-L: Fittings from observer number two where the change in the slope of the 

fittings is less than 1.0. 
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Appendix 7-A: Parseval’s theorem states that the sum or integral of the square of a 

function equates to the sum or integral of the square of its Fourier transform as 

described in the formulas below, where x(t) a function and X(f) is the continuous 

Fourier transform of x(t). 

 

 

න ൌ ݐ݀ ሻ|ଶݐሺݔ|    න  |ܺሺ݂ሻ|ଶ ݂݀
ାஶ

ିஶ

ାஶ

ିஶ
  

 

 

 

One can also think that by Parseval’s theorem the variance of an image is equal to the 

integral of the power spectrum, which in the discrete case looks like the formula: 

 

 

1
݊ ·  ෍|݃ሺݔሻ|ଶ

௡ିଵ

௫ୀ଴
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Appendix 8-A: Parameters and order of the experiment described in Section 8.2.1 

where the parameters followed by ref are from the reference surfaces whilst the one 

followed by adj are from the adjustable surface.    

 

No Base θ Fb1ref Fb2ref Fb1adj Fb2adj Order 

01 1 1 0.25 0.25  12 
02 1 1 0.25 0.50  31 
03 1 1 0.25 1.00  23 
04 1 1 0.25 2.00  26 
05 1 1 0.50 0.25  27 
06 1 1 0.50 0.50  21 
07 1 1 0.50 1.00  11 
08 1 1 0.50 2.00  13 
09 1 1 1.00 0.25  08 
10 1 1 1.00 0.50  28 
11 1 1 1.00 1.00  40 
12 1 1 1.00 2.00  30 
13 2 1 0.25 0.25  37 
14 2 1 0.25 0.50  16 
15 2 1 0.25 1.00  14 
16 2 1 0.25 2.00  24 
17 2 1 0.50 0.25  29 
18 2 1 0.50 0.50  25 
19 2 1 0.50 1.00  15 
20 2 1 0.50 2.00  05 
21 2 1 1.00 0.25  36 
22 2 1 1.00 0.50  17 
23 2 1 1.00 1.00  18 
24 2 1 1.00 2.00  06 
25 3 1 0.25 0.25  09 
26 3 1 0.25 0.50  39 
27 3 1 0.25 1.00  33 
28 3 1 0.25 2.00  38 
29 3 1 0.50 0.25  34 
30 3 1 0.50 0.50  07 
31 3 1 0.50 1.00  20 
32 3 1 0.50 2.00  32 
33 3 1 1.00 0.25  19 
34 3 1 1.00 0.50  22 
35 3 1 1.00 1.00  10 
36 3 1 1.00 2.00  35 
37 1 1 0.25 2.00  01 
38 1 1 0.50 0.25  02 
39 3 1 1.00 0.50  03 
40 3 1 0.50 0.25  04 
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Appendix 8-B: Results from each of the ten observers from the experiment detailed in 

Section 8.2.1. 

 

No Obs1 Obs2 Obs3 Obs4 Obs5 Obs6 Obs7 Obs8 Obs9 Obs10 

01 0.312 0.334 0.295 0.310 0.293 0.261 0.470 0.266 0.254 0.286 
02 0.356 0.227 0.237 0.264 0.383 0.445 0.370 0.266 0.266 0.254 
03 0.274 0.339 0.392 0.227 0.337 0.223 0.286 0.308 0.366 0.318 
04 0.199 0.312 0.237 0.271 0.267 0.528 0.249 0.298 0.187 0.302 
05 0.644 0.588 0.569 0.455 0.629 0.528 0.852 0.480 0.627 0.513 
06 0.511 0.692 0.497 0.506 0.560 0.564 0.853 0.523 0.731 0.574 
07 0.663 0.649 0.535 0.559 0.492 0.434 0.537 0.642 0.767 0.644 
08 0.514 0.366 0.428 0.499 0.434 0.487 0.414 0.457 0.342 0.429 
09 1.136 1.109 0.814 1.072 1.066 0.922 1.233 1.116 0.802 1.114 
10 1.090 1.153 0.944 1.089 0.985 1.068 0.896 1.010 1.170 1.053 
11 1.376 1.072 1.124 0.828 0.957 1.070 1.150 1.102 0.990 1.093 
12 1.332 0.956 1.438 1.228 1.090 1.302 1.145 1.010 0.981 0.994 
13 0.303 0.411 0.218 0.300 0.216 0.526 0.273 0.305 0.300 0.337 
14 0.293 0.380 0.433 0.256 0.273 0.339 0.213 0.276 0.320 0.307 
15 0.138 0.334 0.308 0.266 0.337 0.445 0.262 0.242 0.266 0.270 
16 0.261 0.273 0.164 0.240 0.300 0.215 0.157 0.378 0.259 0.347 
17 0.509 0.632 0.601 0.550 0.620 0.477 0.675 0.620 0.385 0.624 
18 0.596 0.716 0.486 0.441 0.613 0.608 0.663 0.479 0.474 0.550 
19 0.571 0.692 0.497 0.540 0.687 0.564 0.853 0.523 0.618 0.574 
20 0.543 0.596 0.392 0.492 0.603 0.445 0.400 0.523 0.366 0.545 
21 0.952 1.181 1.119 1.109 1.189 1.077 1.244 1.109 0.860 1.130 
22 1.090 1.143 0.944 0.974 1.094 1.068 0.918 1.145 1.145 1.144 
23 1.250 0.840 0.997 1.104 1.257 1.162 1.053 0.922 0.862 0.897 
24 1.066 1.153 0.944 1.055 0.874 1.245 0.896 1.203 0.760 1.188 
25 0.288 0.235 0.295 0.203 0.298 0.434 0.387 0.317 0.256 0.292 
26 0.291 0.310 0.266 0.324 0.344 0.497 0.472 0.276 0.329 0.286 
27 0.342 0.376 0.203 0.237 0.329 0.446 0.293 0.295 0.288 0.319 
28 0.302 0.259 0.228 0.302 0.235 0.250 0.094 0.261 0.225 0.260 
29 0.727 0.540 0.468 0.647 0.683 0.608 0.663 0.651 0.474 0.618 
30 0.554 0.532 0.593 0.494 0.704 0.698 0.705 0.516 0.761 0.521 
31 0.617 0.545 0.463 0.451 0.523 0.532 0.688 0.620 0.405 0.598 
32 0.468 0.692 0.526 0.564 0.330 0.494 0.537 0.523 0.514 0.574 
33 1.174 1.147 1.041 0.998 1.223 0.983 0.918 1.089 1.145 1.106 
34 1.063 1.065 1.121 1.073 0.951 0.748 1.135 1.264 0.761 1.204 
35 0.908 1.155 1.020 0.925 1.279 1.104 1.332 1.337 1.349 1.283 
36 1.196 0.991 0.998 0.971 0.973 0.985 1.111 1.196 1.032 1.135 
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Appendix 8-C: In the table, the fittings and their parameters are demonstrated from the 

experiment in Section 8-2.1.  

 

Reference x2 x Intersect Formula R2 

ݕ 0.2872 0.0276- 0.0414 0.25 ൌ ଶݔ0.0414 െ ݔ0.0276 ൅ 0.2872 0.9988 
ݕ 0.6170 0.0014- 0.0569- 0.50 ൌ െ0.0569ݔଶ െ ݔ0.0014 ൅ 0.6170 0.8851 
ݕ 1.0977 0.0063- 0.0052- 1.00 ൌ െ0.0052ݔଶ െ ݔ0.0063 ൅ 1.0977 0.4656 

 

 

 

 

 

 

 

 

 

 

 

Appendix 8-D: In the table, the fittings and their parameters are demonstrated from the 

experiment in Section 8.2.1. 

 

Reference x2 x Intersect Formula R2 

ݕ 0.1088 0.1795 0.1799- 0.0625 ൌ െ0.1799ݔଶ ൅ ݔ0.1795 ൅ 0.1088 0.9880 
ݕ 0.1829 0.1641 0.2357- 0.1250 ൌ െ0.2357ݔଶ െ ݔ0.1641 ൅ 0.1829 0.9996 
ݕ 0.2507 0.1907 0.1195- 0.2500 ൌ െ0.1195ݔଶ െ ݔ0.1907 ൅ 0.2507 0.7308 
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Appendix 8-E: Parameters and order of the experiment described in Section 8.2.2 

where the parameters followed by ref are from the reference surfaces whilst the ones 

followed by adj are from the adjustable surface.    

 

No Base θ Fb2ref Fb3ref Fb2adj Fb3adj Order 

01 1 0.2500 0.0625 0.0625  24 
02 1 0.2500 0.0625 0.1250  39 
03 1 0.2500 0.0625 0.2500  18 
04 1 0.2500 0.0625 0.5000  17 
05 1 0.2500 0.1250 0.0625  14 
06 1 0.2500 0.1250 0.1250  10 
07 1 0.2500 0.1250 0.2500  11 
08 1 0.2500 0.1250 0.5000  15 
09 1 0.2500 0.2500 0.0625  29 
10 1 0.2500 0.2500 0.1250  20 
11 1 0.2500 0.2500 0.2500  30 
12 1 0.2500 0.2500 0.5000  36 
13 2 0.2500 0.0625 0.0625  31 
14 2 0.2500 0.0625 0.1250  27 
15 2 0.2500 0.0625 0.2500  09 
16 2 0.2500 0.0625 0.5000  32 
17 2 0.2500 0.1250 0.0625  26 
18 2 0.2500 0.1250 0.1250  25 
19 2 0.2500 0.1250 0.2500  34 
20 2 0.2500 0.1250 0.5000  19 
21 2 0.2500 0.2500 0.0625  37 
22 2 0.2500 0.2500 0.1250  06 
23 2 0.2500 0.2500 0.2500  23 
24 2 0.2500 0.2500 0.5000  13 
25 3 0.2500 0.0625 0.0625  16 
26 3 0.2500 0.0625 0.1250  22 
27 3 0.2500 0.0625 0.2500  40 
28 3 0.2500 0.0625 0.5000  28 
29 3 0.2500 0.1250 0.0625  12 
30 3 0.2500 0.1250 0.1250  38 
31 3 0.2500 0.1250 0.2500  08 
32 3 0.2500 0.1250 0.5000  05 
33 3 0.2500 0.2500 0.0625  33 
34 3 0.2500 0.2500 0.1250  35 
35 3 0.2500 0.2500 0.2500  07 
36 3 0.2500 0.2500 0.5000  21 
37 1 0.2500 0.2500 0.0625  01 
38 1 0.2500 0.2500 0.1250  02 
39 3 0.2500 0.1250 0.2500  03 
40 3 0.2500 0.1250 0.5000  04 
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Appendix 8-F: Results from each of the ten observers from the experiment detailed in 

Section 8.2.2. 

 

No Obs1 Obs2 Obs3 Obs4 Obs5 Obs6 Obs7 Obs8 Obs9 Obs10 

01 0.1050 0.1037 0.0746 0.0521 0.1211 0.0846 0.0654 0.0782 0.1096 0.0859 
02 0.0767 0.0976 0.0958 0.1037 0.0945 0.1035 0.1112 0.0838 0.0966 0.0880 
03 0.0685 0.0713 0.0662 0.0925 0.0672 0.0685 0.1952 0.0654 0.0391 0.0672 
04 0.1043 0.0940 0.0682 0.0455 0.0399 0.0381 0.0493 0.0506 0.0664 0.0636 
05 0.1559 0.1487 0.1209 0.1584 0.1352 0.1308 0.1952 0.1595 0.1528 0.1562 
06 0.1620 0.1819 0.1290 0.1469 0.1526 0.0667 0.1592 0.1306 0.1423 0.1460 
07 0.1344 0.1293 0.0800 0.1060 0.1503 0.1423 0.1771 0.1372 0.1541 0.1348 
08 0.1403 0.1257 0.1045 0.0851 0.1050 0.1720 0.1209 0.0961 0.0616 0.1050 
09 0.2918 0.2980 0.2131 0.2596 0.2752 0.1929 0.2208 0.2502 0.2272 0.2645 
10 0.2581 0.2675 0.2003 0.2144 0.2415 0.2177 0.2098 0.2632 0.2203 0.2645 
11 0.2586 0.2443 0.1942 0.2251 0.2198 0.1881 0.1725 0.2612 0.1796 0.2561 
12 0.2474 0.2438 0.1561 0.2251 0.1960 0.2548 0.1377 0.1692 0.2399 0.1916 
13 0.1037 0.0823 0.0639 0.0879 0.0723 0.0703 0.1398 0.1382 0.1293 0.1215 
14 0.0616 0.0981 0.0634 0.0649 0.0767 0.0848 0.0876 0.1055 0.0979 0.1033 
15 0.1009 0.0882 0.0853 0.0342 0.1267 0.0792 0.1278 0.0721 0.0940 0.0769 
16 0.0657 0.1020 0.0463 0.0123 0.1101 0.0667 0.0256 0.0363 0.0399 0.0560 
17 0.1888 0.1592 0.1344 0.1372 0.1520 0.1403 0.1032 0.1876 0.1991 0.1791 
18 0.1710 0.1500 0.1497 0.1656 0.1679 0.1477 0.1666 0.1794 0.1549 0.1706 
19 0.1595 0.1434 0.1681 0.0956 0.0953 0.1122 0.1702 0.1354 0.1142 0.1378 
20 0.1334 0.1063 0.1687 0.0856 0.1096 0.1344 0.1725 0.1014 0.1094 0.1029 
21 0.2440 0.2831 0.2060 0.2101 0.2484 0.2576 0.2205 0.2808 0.2287 0.2815 
22 0.3000 0.2783 0.1929 0.2374 0.2282 0.1743 0.1579 0.2778 0.2295 0.2779 
23 0.2964 0.2190 0.2210 0.2576 0.1947 0.2144 0.1771 0.2847 0.2849 0.2650 
24 0.2369 0.2900 0.2402 0.2512 0.2428 0.2310 0.1998 0.2425 0.2517 0.2568 
25 0.0905 0.1252 0.0746 0.0744 0.0953 0.1122 0.1329 0.1334 0.1096 0.1309 
26 0.0859 0.0659 0.0588 0.0945 0.0851 0.0335 0.0429 0.0764 0.1219 0.0733 
27 0.0774 0.0841 0.0756 0.0652 0.0767 0.0953 0.0427 0.0708 0.0984 0.0748 
28 0.0866 0.1280 0.0634 0.0470 0.0452 0.0848 0.0876 0.0360 0.1025 0.0636 
29 0.1482 0.1664 0.1183 0.1145 0.1436 0.1408 0.1850 0.1674 0.1382 0.1671 
30 0.1411 0.1876 0.1485 0.1758 0.1329 0.1641 0.1224 0.1715 0.1556 0.1763 
31 0.1339 0.1275 0.0649 0.0813 0.1073 0.1899 0.1835 0.1352 0.1296 0.1329 
32 0.0797 0.1058 0.1265 0.0603 0.1520 0.0991 0.1326 0.0823 0.1497 0.0893 
33 0.2972 0.2900 0.2402 0.2369 0.2180 0.1773 0.1906 0.2425 0.2655 0.2568 
34 0.2951 0.2438 0.2302 0.2433 0.1927 0.2548 0.1377 0.2277 0.2425 0.2325 
35 0.2443 0.2438 0.2302 0.2392 0.2499 0.2548 0.1377 0.2101 0.2425 0.2202 
36 0.1597 0.2849 0.2236 0.2098 0.1924 0.2867 0.1771 0.2514 0.1804 0.2615 
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Appendix 8-G: Model fit using a gaussian function to the iso-roughness lines [β, σ] 

when weighing the model more towards the data from the iso-roughness lines [β, σ]. 

 

 

 

Appendix 8-H: Model fit using a gaussian function to the iso-roughness lines [β, σ] 

when weighing the model more towards the data from the iso-roughness lines [Fb1, Fb2]. 
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Appendix 8-I: Model fit using a gaussian function to the iso-roughness lines [β, σ]   

when weighing the model more towards the data from the iso-roughness lines [Fb2, Fb3]. 

 

 

 

Appendix 8-J: Model fit using a gaussian function to the iso-roughness lines [Fb1, Fb2] 

when weighing the model more towards the data from the iso-roughness lines [β, σ]. 
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Appendix 8-K: Model fit using a gaussian function to the iso-roughness lines [Fb1, Fb2] when 

weighing the model more towards the data from the iso-roughness lines [Fb1, Fb2]. 

 
Appendix 8-L: Model fit using a gaussian function to the iso-roughness lines [Fb1, Fb2] when weighing 

the model more towards the data from the iso-roughness lines [Fb2, Fb3]. 
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Appendix 8-M: Model fit using a gaussian function to iso-roughness lines [Fb2, Fb3] when weighing the 

model more towards the data from the iso-roughness lines [β, σ] 

 
Appendix 8-N: Model fit using a gaussian function to the iso-roughness lines [Fb2, Fb3] when weighing 

the model more towards the data from the iso-roughness lines [Fb1, Fb2]. 
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Appendix 8-O: Model fit using a gaussian function to the iso-roughness lines [Fb2, Fb3] when 

weighing the model more towards the data from the iso-roughness lines [Fb2, Fb3]. 

 
 

Appendix 8-P: Model fit using a power function to the iso-roughness lines [β, σ] when 

weighing the model more towards the data from the iso-roughness lines [β, σ]. 
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Appendix 8-Q: Model fit using power function to the iso-roughness lines [β, σ] when 

weighing the model more towards the data from the iso-roughness lines [Fb1, Fb2]. 

 

 

 

Appendix 8-R: Model fit using a power function to the iso-roughness lines [β, σ] when 

weighing the model more towards the data from the iso-roughness lines [Fb2, Fb3]. 
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Appendix 8-S: Model fit using a power function to the iso-roughness lines [Fb1, Fb2] 

when weighing the model more towards the data from the iso-roughness lines [β, σ]. 

 
Appendix 8-T: Model fit using a power function to the iso-roughness lines [Fb1, Fb2] when weighing 

the model more towards the data from the iso-roughness lines [Fb1, Fb2]. 
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Appendix 8-U: Model fit using a power function to the iso-roughness lines [Fb1, Fb2] when weighing 

the model more towards the data from the iso-roughness lines [Fb2, Fb3]. 

 
Appendix 8-V: Model fit using a power function to the iso-roughness lines [Fb2, Fb3] when weighing 

the model more towards the data from the iso-roughness lines [β, σ]. 
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Appendix 8-W: Model fit using a power function to the iso-roughness lines [Fb2, Fb3] when weighing 

the model more towards the data from the iso-roughness lines [Fb1, Fb2]. 

 
Appendix 8-X: Model fit using a power function to the iso-roughness lines [Fb2, Fb3] when weighing 

the model more towards the data from the iso-roughness lines [Fb2, Fb3]. 
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Appendix 9-1: The parameter values from the surfaces for the mid-point experiment. The two 

reference surfaces are labelled with subscripts ref1 and ref2 whilst the adjustable surface is labelled adj. 
 

No Trial βref1 σref1 θref1 βadj σadj θadj βref2 σref2 θref2 Order 
01 1 2.0 1.2 11 1.8  11 2.0 0.4 11 07 
02 1 2.0 1.2 11 1.9  11 2.0 0.4 11 43 
03 1 2.0 1.2 11 2.0  11 2.0 0.4 11 46 
04 1 2.0 1.2 11 2.1  11 2.0 0.4 11 11 
05 1 2.0 1.2 11 2.2  11 2.0 0.4 11 32 
06 2 2.0 1.2 12 1.8  12 2.0 0.4 12 10 
07 2 2.0 1.2 12 1.9  12 2.0 0.4 12 15 
08 2 2.0 1.2 12 2.0  12 2.0 0.4 12 12 
09 2 2.0 1.2 12 2.1  12 2.0 0.4 12 22 
10 2 2.0 1.2 12 2.2  12 2.0 0.4 12 28 
11 3 2.0 1.2 13 1.8  13 2.0 0.4 13 21 
12 3 2.0 1.2 13 1.9  13 2.0 0.4 13 50 
13 3 2.0 1.2 13 2.0  13 2.0 0.4 13 20 
14 3 2.0 1.2 13 2.1  13 2.0 0.4 13 29 
15 3 2.0 1.2 13 2.2  13 2.0 0.4 13 42 
16 1 2.0 0.8 14 1.8  14 2.0 0.4 14 26 
17 1 2.0 0.8 14 1.9  14 2.0 0.4 14 39 
18 1 2.0 0.8 14 2.0  14 2.0 0.4 14 47 
19 1 2.0 0.8 14 2.1  14 2.0 0.4 14 49 
20 1 2.0 0.8 14 2.2  14 2.0 0.4 14 09 
21 2 2.0 0.8 15 1.8  15 2.0 0.4 15 34 
22 2 2.0 0.8 15 1.9  15 2.0 0.4 15 30 
23 2 2.0 0.8 15 2.0  15 2.0 0.4 15 16 
24 2 2.0 0.8 15 2.1  15 2.0 0.4 15 25 
25 2 2.0 0.8 15 2.2  15 2.0 0.4 15 23 
26 3 2.0 0.8 16 1.8  16 2.0 0.4 16 24 
27 3 2.0 0.8 16 1.9  16 2.0 0.4 16 40 
28 3 2.0 0.8 16 2.0  16 2.0 0.4 16 44 
29 3 2.0 0.8 16 2.1  16 2.0 0.4 16 27 
30 3 2.0 0.8 16 2.2  16 2.0 0.4 16 19 
31 1 2.0 1.2 17 1.8  17 2.0 0.8 17 08 
32 1 2.0 1.2 17 1.9  17 2.0 0.8 17 35 
33 1 2.0 1.2 17 2.0  17 2.0 0.8 17 37 
34 1 2.0 1.2 17 2.1  17 2.0 0.8 17 36 
35 1 2.0 1.2 17 2.2  17 2.0 0.8 17 38 
36 2 2.0 1.2 18 1.8  18 2.0 0.8 18 13 
37 2 2.0 1.2 18 1.9  18 2.0 0.8 18 33 
38 2 2.0 1.2 18 2.0  18 2.0 0.8 18 14 
39 2 2.0 1.2 18 2.1  18 2.0 0.8 18 18 
40 2 2.0 1.2 18 2.2  18 2.0 0.8 18 41 
41 3 2.0 1.2 19 1.8  19 2.0 0.8 19 17 
42 3 2.0 1.2 19 1.9  19 2.0 0.8 19 48 
43 3 2.0 1.2 19 2.0  19 2.0 0.8 19 31 
44 3 2.0 1.2 19 2.1  19 2.0 0.8 19 06 
45 3 2.0 1.2 19 2.2  19 2.0 0.8 19 45 
46 trial 2.0 1.2 11 2.2  11 2.0 0.4 11 01 
47 trial 2.0 1.2 12 1.8  12 2.0 0.4 12 02 
48 trial 2.0 0.8 16 2.2  16 2.0 0.4 16 03 
49 trial 2.0 1.2 17 1.8  17 2.0 0.8 17 04 
50 trial 2.0 1.2 11 1.8  11 2.0 0.4 11 05 
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Appendix 9-2: Observations from the ten subjects for the mid-point experiment from Section 9-2. 

 

No σadj1 σadj2 σadj3 σadj4 σadj5 σadj6 σadj7 σadj8 σadj9 σadj10 

01 0.334 0.556 0.528 0.682 0.624 0.422 0.493 0.575 0.380 0.569 
02 0.488 0.683 0.666 0.729 0.755 0.527 0.775 0.652 0.740 0.662 
03 0.810 0.892 0.979 0.916 0.860 1.000 0.770 0.796 0.700 0.825 
04 0.966 0.863 0.979 0.917 0.844 0.916 1.013 0.964 0.866 0.934 
05 1.583 1.120 1.073 0.939 1.230 1.307 1.579 1.160 1.049 1.148 
06 0.390 0.528 0.536 0.350 0.728 0.868 0.488 0.446 0.537 0.471 
07 0.571 0.644 0.681 0.574 0.663 0.533 0.619 0.548 0.526 0.577 
08 0.712 0.785 0.757 0.835 0.674 0.914 0.818 0.868 0.772 0.843 
09 0.862 0.854 0.968 0.958 0.712 1.358 1.069 1.122 0.824 1.042 
10 1.083 1.132 1.353 1.208 0.941 1.248 1.298 1.180 1.056 1.166 
11 0.416 0.441 0.572 0.528 0.686 0.538 0.509 0.484 0.430 0.471 
12 0.552 0.494 0.642 0.601 0.666 0.857 0.571 0.541 0.693 0.527 
13 0.844 0.670 0.802 0.796 0.643 0.839 0.743 0.766 0.711 0.737 
14 1.010 1.026 0.979 1.006 0.889 1.360 1.098 0.944 1.023 0.968 
15 1.521 1.119 1.138 1.515 0.952 1.105 1.169 1.304 1.436 1.248 
16 0.311 0.433 0.396 0.398 0.479 0.291 0.456 0.383 0.471 0.398 
17 0.431 0.447 0.550 0.491 0.567 0.400 0.585 0.478 0.436 0.469 
18 0.561 0.631 0.611 0.745 0.778 0.690 0.618 0.628 0.585 0.629 
19 0.748 0.908 0.731 0.842 0.875 0.839 0.792 0.753 0.780 0.800 
20 1.056 0.795 0.798 0.842 0.783 1.110 0.857 1.023 1.024 0.954 
21 0.351 0.390 0.371 0.501 0.664 0.586 0.343 0.347 0.423 0.360 
22 0.463 0.533 0.493 0.391 0.598 0.511 0.484 0.534 0.420 0.534 
23 0.634 0.536 0.598 0.569 0.570 0.510 0.478 0.521 0.551 0.525 
24 0.850 0.805 0.718 0.724 0.960 1.073 0.772 0.717 0.891 0.743 
25 1.235 0.908 0.677 1.157 0.786 1.023 1.103 0.987 0.911 0.963 
26 0.382 0.429 0.448 0.451 0.612 0.353 0.339 0.361 0.316 0.381 
27 0.494 0.499 0.534 0.598 0.534 0.441 0.422 0.433 0.473 0.453 
28 0.599 0.603 0.623 0.593 0.627 0.583 0.688 0.620 0.603 0.615 
29 0.746 0.766 0.778 0.576 0.839 1.474 0.786 0.832 0.900 0.812 
30 1.029 1.028 0.987 1.073 1.019 1.358 0.721 1.031 1.162 1.030 
31 0.544 0.646 0.585 0.635 0.791 0.457 0.584 0.550 0.597 0.578 
32 0.650 0.772 0.692 0.712 0.829 1.221 0.736 0.708 0.752 0.727 
33 0.875 0.936 1.008 1.053 1.101 0.900 1.105 0.912 0.814 0.919 
34 1.283 1.199 1.005 1.237 1.239 0.886 1.108 1.289 1.205 1.262 
35 1.699 1.638 1.383 1.378 1.160 0.886 1.298 1.548 1.152 1.575 
36 0.357 0.580 0.603 0.707 0.736 0.330 0.794 0.648 0.623 0.628 
37 0.715 0.707 0.714 0.733 1.021 0.656 0.796 0.662 0.767 0.675 
38 0.882 0.914 0.939 0.939 0.985 0.658 1.024 0.955 0.885 0.943 
39 1.265 1.119 0.956 1.120 1.112 1.105 0.987 1.189 1.079 1.168 
40 1.721 1.730 1.498 1.725 1.112 1.655 1.719 1.575 1.036 1.621 
41 0.387 0.577 0.572 0.557 0.647 0.475 0.586 0.544 0.584 0.554 
42 0.786 0.718 0.701 0.682 0.925 0.601 0.736 0.738 0.632 0.732 
43 0.902 0.956 1.006 0.845 0.738 0.968 0.960 0.937 1.041 0.943 
44 1.287 0.969 1.019 1.173 1.167 0.886 1.287 1.205 1.125 1.134 
45 1.786 1.411 1.560 1.378 1.183 1.324 1.710 1.426 1.446 1.422 
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Appendix 9-3: The fifteen median values of σadj compiled from the results of the mid-

point experiment described in Section 9.2. 
 

Median β = 1.8 β = 1.9 β = 2.0 β = 2.1 β = 2.2 
σref1 = 0.4 vs. 
σref2 = 0.8 0.3931 0.4878 0.6033 0.7958 1.0211 

σref1 = 0.4 vs. 
σref2 = 1.2 0.5184 0.6303 0.7994 0.9668 1.1673 

σref1 = 0.8 vs. 
σref2 = 1.2 0.5839 0.7226 0.9390 1.1507 1.4724 

 

  

 

Appendix 9-4: ξpr values for the fifteen medians as described in Section 9.2. 
 

ξpr β = 1.8 β = 1.9 β = 2.0 β = 2.1 β = 2.2 
σref1 = 0.4 vs. 
σref2 = 0.8 26518.27 21056.77 18610.17 20778.93 17707.93 

σref1 = 0.4 vs. 
σref2 = 1.2 41704.04 34285.55 32861.17 29006.81 27025.36 

σref1 = 0.8 vs. 
σref2 = 1.2 52362.40 49329.08 44572.41 39110.81 39142.15 

 

  

 

Appendix 9-5: Set of eighteen equations to scale the estimator: 

 

1.  100 ൌ  a · 74725ଶ ൅ b · 74725 

2.  M  ൌ  a · 34216ଶ ൅ b · 34216 

3.  L   ൌ  a · 10603ଶ ൅ b · 10603 

 

4.  Mାଵ଴଴
ଶ

ൌ  a · 52362ଶ ൅ b · 52362 

5.  Mାଵ଴଴
ଶ

ൌ  a · 49329ଶ ൅ b · 49329 

6.  Mାଵ଴଴
ଶ

ൌ  a · 44572ଶ ൅ b · 44572 

7.  Mାଵ଴଴
ଶ

ൌ  a · 39111ଶ ൅ b · 39111 

8.  Mାଵ଴଴
ଶ

ൌ  a · 39142ଶ ൅ b · 39142 
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9.  Lାଵ଴଴
ଶ

ൌ  a · 41704ଶ ൅ b · 41704 

10.  Lାଵ଴଴
ଶ

ൌ  a · 34285ଶ ൅ b · 34285 

11.  Lାଵ଴଴
ଶ

ൌ  a · 32861ଶ ൅ b · 32861 

12.  Lାଵ଴଴
ଶ

ൌ  a · 29007ଶ ൅ b · 29007 

13.  Lାଵ଴଴
ଶ

ൌ  a · 27025ଶ ൅ b · 27025 

 

 
14.  LାM

ଶ
ൌ  a · 26518ଶ ൅ b · 26518 

15.  LାM
ଶ

ൌ  a · 21057ଶ ൅ b · 21057 

16.  LାM
ଶ

ൌ  a · 18610ଶ ൅ b · 18610 

17.  LାM
ଶ

ൌ  a · 20779ଶ ൅ b · 20779 

18.  LାM
ଶ

ൌ  a · 17708ଶ ൅ b · 17708 
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