271 research outputs found

    Feature Selection Mammogram based on Breast Cancer Mining

    Get PDF
    The very dense breast of mammogram image makes the Radiologists often have difficulties in interpreting the mammography objectively and accurately. One of the key success factors of computer-aided diagnosis (CADx) system is the use of the right features. Therefore, this research emphasizes on the feature selection process by performing the data mining on the results of mammogram image feature extraction. There are two algorithms used to perform the mining, the decision tree and the rule induction. Furthermore, the selected features produced by the algorithms are tested using classification algorithms: k-nearest neighbors, decision tree, and naive bayesian with the scheme of 10-fold cross validation using stratified sampling way. There are five descriptors that are the best features and have contributed in determining the classification of benign and malignant lesions as follows: slice, integrated density, area fraction, model gray value, and center of mass. The best classification results based on the five features are generated by the decision tree algorithm with accuracy, sensitivity, specificity, FPR, and TPR of 93.18%; 87.5%; 3.89%; 6.33% and 92.11% respectively

    A unified learning framework for content based medical image retrieval using a statistical model

    Get PDF
    AbstractThis paper presents a unified learning framework for heterogeneous medical image retrieval based on a Full Range Autoregressive Model (FRAR) with the Bayesian approach (BA). Using the unified framework, the color autocorrelogram, edge orientation autocorrelogram (EOAC) and micro-texture information of medical images are extracted. The EOAC is constructed in HSV color space, to circumvent the loss of edges due to spectral and chromatic variations. The proposed system employed adaptive binary tree based support vector machine (ABTSVM) for efficient and fast classification of medical images in feature vector space. The Manhattan distance measure of order one is used in the proposed system to perform a similarity measure in the classified and indexed feature vector space. The precision and recall (PR) method is used as a measure of performance in the proposed system. Short-term based relevance feedback (RF) mechanism is also adopted to reduce the semantic gap. The Experimental results reveal that the retrieval performance of the proposed system for heterogeneous medical image database is better than the existing systems at low computational and storage cost

    Autoencoding the Retrieval Relevance of Medical Images

    Full text link
    Content-based image retrieval (CBIR) of medical images is a crucial task that can contribute to a more reliable diagnosis if applied to big data. Recent advances in feature extraction and classification have enormously improved CBIR results for digital images. However, considering the increasing accessibility of big data in medical imaging, we are still in need of reducing both memory requirements and computational expenses of image retrieval systems. This work proposes to exclude the features of image blocks that exhibit a low encoding error when learned by a n/p/nn/p/n autoencoder (p ⁣< ⁣np\!<\!n). We examine the histogram of autoendcoding errors of image blocks for each image class to facilitate the decision which image regions, or roughly what percentage of an image perhaps, shall be declared relevant for the retrieval task. This leads to reduction of feature dimensionality and speeds up the retrieval process. To validate the proposed scheme, we employ local binary patterns (LBP) and support vector machines (SVM) which are both well-established approaches in CBIR research community. As well, we use IRMA dataset with 14,410 x-ray images as test data. The results show that the dimensionality of annotated feature vectors can be reduced by up to 50% resulting in speedups greater than 27% at expense of less than 1% decrease in the accuracy of retrieval when validating the precision and recall of the top 20 hits.Comment: To appear in proceedings of The 5th International Conference on Image Processing Theory, Tools and Applications (IPTA'15), Nov 10-13, 2015, Orleans, Franc

    ANALYSIS OF MAMMOGRAM FOR DETECTION OF BREAST CANCER USING WAVELET STATISTICAL FEATURES

    Get PDF
    Early detection of breast cancer increases the survival rate and increases the treatment options. One of the most powerful techniques for early detection of breast cancer is based on digital mammogram. A system can be developed for assisting the analysis of digital mammograms using log-Gabor wavelet statistical features. The proposed system involves three major steps called Pre-processing, Processing, and Feature extraction. In pre-processing, the digital mammogram can be de-noised using efficient decision-based algorithm. In processing stage, the suspicious Region of Interest (ROI) can be cropped and convolved with log-Gabor filter for four different orientations. Then gray level co-occurrence matrix (GLCM)can be constructed for log-Gabor filter output at four different orientations and from that first order statistical features and second order statistical features can be extracted to analyze whether the mammogram as normal or benign or malignant. The proposed method can allow the radiologist to focus rapidly on the relevant parts of the mammogram and it can increase the effectiveness and efficiency of radiology clinics

    A Decision Support System (DSS) for Breast Cancer Detection Based on Invariant Feature Extraction, Classification, and Retrieval of Masses of Mammographic Images

    Get PDF
    This paper presents an integrated system for the breast cancer detection from mammograms based on automated mass detection, classification, and retrieval with a goal to support decision-making by retrieving and displaying the relevant past cases as well as predicting the images as benign or malignant. It is hypothesized that the proposed diagnostic aid would refresh the radiologist’s mental memory to guide them to a precise diagnosis with concrete visualizations instead of only suggesting a second diagnosis like many other CAD systems. Towards achieving this goal, a Graph-Based Visual Saliency (GBVS) method is used for automatic mass detection, invariant features are extracted based on using Non-Subsampled Contourlet transform (NSCT) and eigenvalues of the Hessian matrix in a histogram of oriented gradients (HOG), and finally classification and retrieval are performed based on using Support Vector Machines (SVM) and Extreme Learning Machines (ELM), and a linear combination-based similarity fusion approach. The image retrieval and classification performances are evaluated and compared in the benchmark Digital Database for Screening Mammography (DDSM) of 2604 cases by using both the precision-recall and classification accuracies. Experimental results demonstrate the effectiveness of the proposed system and show the viability of a real-time clinical application

    Mammograms Classification Using Gray-level Co-occurrence Matrix and Radial Basis Function Neural Network

    Get PDF
    AbstractComputer Aided Diagnosis (CAD) is used to assist radiologist in classifying various type of breast cancers. It already proved its success not only in reducing human error in reading the mammograms but also shows better and reliable classification into benign and malignant abnormalities.This paper will report and attempt on using Radial Basis Function Neural Network (RBFNN) for mammograms classification based on Gray-level Co-occurrence Matrix (GLCM) texture based features.In this study, normal and abnormal breast image used as the standard input are taken from Mammographic Image Analysis Society (MIAS) digital mammogram database. The computational experiments show that RBFNN is better than Back-propagation Neural Network (BPNN) in performing breast cancer classification. For normal and abnormal classification, the result shows that RBFNN's accuracy is93.98%, which is 14% higher than BPNN, while the accuracy of benign and malignant classification is 94.29% which is 2% higher than BPNN
    corecore