2,573 research outputs found

    Texture analysis of aggressive and nonaggressive lung tumor CE CT images

    Get PDF
    This paper presents the potential for fractal analysis of time sequence contrast-enhanced (CE) computed tomography (CT) images to differentiate between aggressive and nonaggressive malignant lung tumors (i.e., high and low metabolic tumors). The aim is to enhance CT tumor staging prediction accuracy through identifying malignant aggressiveness of lung tumors. As branching of blood vessels can be considered a fractal process, the research examines vascularized tumor regions that exhibit strong fractal characteristics. The analysis is performed after injecting 15 patients with a contrast agent and transforming at least 11 time sequence CE CT images from each patient to the fractal dimension and determining corresponding lacunarity. The fractal texture features were averaged over the tumor region and quantitative classification showed up to 83.3% accuracy in distinction between advanced (aggressive) and early-stage (nonaggressive) malignant tumors. Also, it showed strong correlation with corresponding lung tumor stage and standardized tumor uptake value of fluoro deoxyglucose as determined by positron emission tomography. These results indicate that fractal analysis of time sequence CE CT images of malignant lung tumors could provide additional information about likely tumor aggression that could potentially impact on clinical management decisions in choosing the appropriate treatment procedure

    A Rapid Segmentation-Insensitive "Digital Biopsy" Method for Radiomic Feature Extraction: Method and Pilot Study Using CT Images of Non-Small Cell Lung Cancer.

    Get PDF
    Quantitative imaging approaches compute features within images' regions of interest. Segmentation is rarely completely automatic, requiring time-consuming editing by experts. We propose a new paradigm, called "digital biopsy," that allows for the collection of intensity- and texture-based features from these regions at least 1 order of magnitude faster than the current manual or semiautomated methods. A radiologist reviewed automated segmentations of lung nodules from 100 preoperative volume computed tomography scans of patients with non-small cell lung cancer, and manually adjusted the nodule boundaries in each section, to be used as a reference standard, requiring up to 45 minutes per nodule. We also asked a different expert to generate a digital biopsy for each patient using a paintbrush tool to paint a contiguous region of each tumor over multiple cross-sections, a procedure that required an average of <3 minutes per nodule. We simulated additional digital biopsies using morphological procedures. Finally, we compared the features extracted from these digital biopsies with our reference standard using intraclass correlation coefficient (ICC) to characterize robustness. Comparing the reference standard segmentations to our digital biopsies, we found that 84/94 features had an ICC >0.7; comparing erosions and dilations, using a sphere of 1.5-mm radius, of our digital biopsies to the reference standard segmentations resulted in 41/94 and 53/94 features, respectively, with ICCs >0.7. We conclude that many intensity- and texture-based features remain consistent between the reference standard and our method while substantially reducing the amount of operator time required

    Role of magnetic resonance imaging in the detection and characterization of solid pancreatic nodules: an update

    Get PDF
    Pancreatic ductal adenocarcinoma is the most common malignant tumor of the pancreas. The remaining pancreatic tumors are a diverse group of pancreatic neoplasms that comprises cystic pancreatic neoplasms, endocrine tumors and other uncommon pancreatic tumors. Due to the excellent soft tissue contrast resolution, magnetic resonance imaging (MRI) is frequently able to readily separate cystic from noncystic tumors. Cystic tumors are often easy to diagnose with MRI; however, noncystic non-adenocarcinoma tumors may show a wide spectrum of imaging features, which can potentially mimic ductal adenocarcinoma. MRI is a reliable technique for the characterization of pancreatic lesions. The implementation of novel motion-resistant pulse sequences and respiratory gating techniques, as well as the recognized benefits of MR cholangiopancreatography, make MRI a very accurate examination for the evaluation of pancreatic masses. MRI has the distinctive ability of non-invasive assessment of the pancreatic ducts, pancreatic parenchyma, neighbouring soft tissues, and vascular network in one examination. MRI can identify different characteristics of various solid pancreatic lesions, potentially allowing the differentiation of adenocarcinoma from other benign and malignant entities. In this review we describe the MRI protocols and MRI characteristics of various solid pancreatic lesions. Recognition of these characteristics may establish the right diagnosis or at least narrow the differential diagnosis, thus avoiding unnecessary tests or procedures and permitting better management

    Total-liver-volume perfusion CT using 3-D image fusion to improve detection and characterization of liver metastases

    Get PDF
    The purpose of this study was to evaluate the feasibility of a totalliver- volume perfusion CT (CTP) technique for the detection and characterization of livermetastases. Twenty patients underwent helical CT of the total liver volume before and 11 times after intravenous contrast-material injection. To decrease distortion artifacts, all phases were co-registered using 3-D image fusion before creating blood-flow maps. Lesion-based sensitivity and specificity for liver metastases of first the conventional four phases (unenhanced, arterial, portal venous, and equilibrium) and later all 12 phases including blood-flow maps were determined as compared to intraoperative ultrasound and surgical exploration. Arterial and portal venous perfusion was calculated for normalappearing and metastatic liver tissue. Total-liver-volume perfusion values were comparable to studies using single-level CTP. Compared to fourphase CT, total -liver-volume CTP increased sensitivity to 89.2 from 78.4% (P=0.046) and specificity to 82.6 from 78.3% (P=0.074). Total - liver-volume CTP is a noninvasive, quantitative, and feasible technique. Preliminary results suggest an improved detection of liver metastases for CTP compared to four-phase CT

    Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps

    Get PDF
    © 2017 The Author(s). This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic

    New advances in radiomics of gastrointestinal stromal tumors

    Get PDF
    Gastrointestinal stromal tumors (GISTs) are uncommon neoplasms of the gastrointestinal tract with peculiar clinical, genetic, and imaging characteristics. Preoperative knowledge of risk stratification and mutational status is crucial to guide the appropriate patients’ treatment. Predicting the clinical behavior and biological aggressiveness of GISTs based on conventional computed tomography (CT) and magnetic resonance imaging (MRI) evaluation is challenging, unless the lesions have already metastasized at the time of diagnosis. Radiomics is emerging as a promising tool for the quantification of lesion heterogeneity on radiological images, extracting additional data that cannot be assessed by visual analysis. Radiomics applications have been explored for the differential diagnosis of GISTs from other gastrointestinal neoplasms, risk stratification and prediction of prognosis after surgical resection, and evaluation of mutational status in GISTs. The published researches on GISTs radiomics have obtained excellent performance of derived radiomics models on CT and MRI. However, lack of standardization and differences in study methodology challenge the application of radiomics in clinical practice. The purpose of this review is to describe the new advances of radiomics applied to CT and MRI for the evaluation of gastrointestinal stromal tumors, discuss the potential clinical applications that may impact patients’ management, report limitations of current radiomics studies, and future directions

    Radiomics analysis in gastrointestinal imaging: a narrative review

    Get PDF
    Background and Objective: To present an overview of radiomics radiological applications in major gastrointestinal oncological non-oncologic diseases, such as colorectal cancer, pancreatic cancer, gastro- oesophageal cancer, gastrointestinal stromal tumor (GIST), hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and non-oncologic diseases, such as liver fibrosis, nonalcoholic steatohepatitis, and inflammatory bowel disease. Methods: A search of PubMed databases was performed for the terms “radiomic”, “radiomics”, “liver”, “small bowel”, “colon”, “GI tract”, and “gastrointestinal imaging” for English articles published between January 2013 and July 2022. A narrative review was undertaken to summarize literature pertaining to application of radiomics in major oncological and non-oncological gastrointestinal diseases. The strengths and limitation of radiomics, as well as advantages and major limitations and providing considerations for future development of radiomics were discussed. Key Content and Findings: Radiomics consists in extracting and analyzing a vast amount of quantitative features from medical datasets, Radiomics refers to the extraction and analysis of large amounts of quantitative features from medical images. The extraction of these data, integrated with clinical data, allows the construction of descriptive and predictive models that can build disease-specific radiomic signatures. Texture analysis has emerged as one of the most important biomarkers able to assess tumor heterogeneity and can provide microscopic image information that cannot be identified with the naked eye by radiologists. Conclusions: Radiomics and texture analysis are currently under active investigation in several institutions worldwide, this approach is being tested in a multitude of anatomical areas and diseases, with the final aim to exploit personalized medicine in diagnosis, treatment planning, and prediction of outcomes. Despite promising initial results, the implementation of radiomics is still hampered by some limitations related to the lack of standardization and validation of image acquisition protocols, feature segmentation, data extraction, processing, and analysi
    • 

    corecore