4,071 research outputs found

    Texture analysis using Gabor wavelets

    Get PDF
    Receptive field profiles of simple cells in the visual cortex have been shown to resemble even- symmetric or odd-symmetric Gabor filters. Computational models employed in the analysis of textures have been motivated by two-dimensional Gabor functions arranged in a multi-channel architecture. More recently wavelets have emerged as a powerful tool for non-stationary signal analysis capable of encoding scale-space information efficiently. A multi-resolution implementation in the form of a dyadic decomposition of the signal of interest has been popularized by many researchers. In this paper, Gabor wavelet configured in a \u27rosette\u27 fashion is used as a multi-channel filter-bank feature extractor for texture classification. The \u27rosette\u27 spans 360 degrees of orientation and covers frequencies from dc. In the proposed algorithm, the texture images are decomposed by the Gabor wavelet configuration and the feature vectors corresponding to the mean of the outputs of the multi-channel filters extracted. A minimum distance classifier is used in the classification procedure. As a comparison the Gabor filter has been used to classify the same texture images from the Brodatz album and the results indicate the superior discriminatory characteristics of the Gabor wavelet. With the test images used it can be concluded that the Gabor wavelet model is a better approximation of the cortical cell receptive field profiles

    Plant image retrieval using color, shape and texture features

    Get PDF
    We present a content-based image retrieval system for plant image retrieval, intended especially for the house plant identification problem. A plant image consists of a collection of overlapping leaves and possibly flowers, which makes the problem challenging.We studied the suitability of various well-known color, shape and texture features for this problem, as well as introducing some new texture matching techniques and shape features. Feature extraction is applied after segmenting the plant region from the background using the max-flow min-cut technique. Results on a database of 380 plant images belonging to 78 different types of plants show promise of the proposed new techniques and the overall system: in 55% of the queries, the correct plant image is retrieved among the top-15 results. Furthermore, the accuracy goes up to 73% when a 132-image subset of well-segmented plant images are considered

    The effect of time on ear biometrics

    No full text
    We present an experimental study to demonstrate the effect of the time difference in image acquisition for gallery and probe on the performance of ear recognition. This experimental research is the first study on the time effect on ear biometrics. For the purpose of recognition, we convolve banana wavelets with an ear image and then apply local binary pattern on the convolved image. The histograms of the produced image are then used as features to describe an ear. A histogram intersection technique is then applied on the histograms of two ears to measure the ear similarity for the recognition purposes. We also use analysis of variance (ANOVA) to select features to identify the best banana wavelets for the recognition process. The experimental results show that the recognition rate is only slightly reduced by time. The average recognition rate of 98.5% is achieved for an eleven month-difference between gallery and probe on an un-occluded ear dataset of 1491 images of ears selected from Southampton University ear database
    corecore