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Texture Analysis Using Gabor Wavelets

0. Naghdy, J. Wang, and P. Ogunbona

Department of Electrical and Computer Engineering

University of Wollongong, Australia

ABSTRACT

Receptive field profiles of simple cells in the visual cortex have been shown to resemble even-symmetric
or odd-symmetric Gabor filters. Computational models employed in the analysis of textures have been
motivated by two-dimensional Gabor functions arranged in a multi-channel architecture. More recently
Wavelets have emerged as a powerful tool for non-stationary signal analysis capable of encoding scale-
space information efficiently. A multi-resolution implementation in the form of a dyadic decomposition of
the signal of interest has been popularised by many researchers. In this paper, Gabor wavelet configured
in a 'rosette' fashion is used as a multi-channel ifiter-bank feature extractor for texture classification. The
'rosette' spans 360 degrees of orientation and covers frequencies from DC. In the proposed algorithm, the
texture images are decomposed by the Gabor wavelet configuration and the feature vectors
corresponding to the mean of the outputs of the multi-channel filters extracted. A minimum distance
classifier is used in the classification procedure.

As a comparison the Gabor filter has been used to classify the same texture images from the Brodatz
album and the results indicate the superior disciiminatory characteristics of the Gabor wavelet. With the
test images used it can be concluded that the Gabor wavelet model is a better approximation of the
cortical cell receptive field profiles.

Key words - Human visual system, Gabor functions, Gabor transfonn, Gabor Wavelets, texture analysis,
texture classification.

1. INTRODUCTION

Texture analysis plays an important role in vision research, and is an important feature of object
recognition and classification. There have been a number of reports on texture analysis using multi-

channel or multi-resolution methods with promising results in the areas of texture segmentation,
description and recognition over the last decade [1], [16], [17], [18]. Texture classification, has also
received much attention and some techniques of texture feature representation towards classification have

been proposed [21].

One plausible approach in texture classification is to employ the known paradigms with respect to the

Human Visual System (HVS) in a multi-tier configuration. The low level vision, for example, can be
rooted in the multi-channel model of simple cells. The Receptive Field Profiles (RFPs) of simple cells in
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the visual cortex often resemble even-symmetric or odd-symmetric Gabor filters [14]. Researchers in

computational texture analysis have used 2-D Gabor functions as the channel filters [18]. In the proposed

systems, the orientations, radial frequency bandwidth and center frequencies of filters are tuned according

to the spatial properties of the textures. Boundaries between textures can be detected by the channel
amplitude comparisons, and discontinuity in texture phase can be detected by locating large variations in

the channel phase demodulation. Though the results are promising, it is obvious that filters cannot be
customized to individual textures in a truly autonomous texture segmentation and classification
architecture.

The problem of early research in this area lies in that the filters are not generic and are strictly designed to

suit the images at hand. This total image dependency defies the premise that simple cells in visual cortex

possess RFPs tuned to a prescribed range of frequencies and orientations. The extent of the elasticity of

the RFP of a simple cell is not fully determined or understood at the present time. There are evidences,

however, to suggest that the RFPs of a group of simple cells in the visual cortex have been fixed
(hardwired) shortly after birth. These group of simple cells act as feature detectors for a range of
frequency and orientation. In order to simulate their feature detection properties, the channel filters which

are image independent and can detect full range frequency and orientation features are required.

Wavelets have recently been utilised as a powerful tool for non-stationary signal analysis. They have been

widely applied to multi resolution image processing. The aim of this study is to develop a generic feature

vector generator for texture classification. To this end, Gabor Wavelets, which are formulated as
"rosette" configuration, are used as multi-channel filter banks to generate the feature vector. The
"rosette" configuration spans over 360 degrees of orientation and covers frequencies from DC.

In this algorithm, the feature vector is generated by decomposing the image into several frequency and

orientation bands using Gabor Wavelets (filter banks) and then extracting one feature from each band. In

the subsequent stage, a classification process is completed by searching the minimum distance feature

vector. The classification results using natural texture images from Brodatz album are reported, and

Gabor transform functions are also tested as the comparison. From the result, it is concluded that Gabor

Wavelets exhibit a better discriminatory feature detector characteristics, hence, it is an effective tool in

texture classification. Furthermore, Gabor Wavelets with their feature detection capabilities and optimal

spatial spatial/frequency resolution could be a good approximation of the RFPs' of the simple cells in
visual cortex.

SPIE Vol. 2657 / 75
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The rest of this paper is organised as follow; in section 2, fundamentals of Wavelets and Gabor transform

are introduced. Detailed methods of image texture classification by Wavelets and Gabor transform are

shown in section 3. Results of the classification are in section 4, and section 5 is discussion.

2. GABOR WAVELETS AND TRANSFORM

2.1 SHORT TIME FOURIER TRANSFORM

Fourier transform is used widely in signal processing. It is the foot stone of modem signal analysis. The

Fourier transform and its reverse are defmed as follows:

F(co) = rf(t) exp(—jot)dt (1)

f(t) =.L j F(o)exp(ftot)do (2)2ic -
where F(w) is the Fourier transform of the time basis signal f(t), and

exp(jwt) = cos(o.it) + j sin(cot) (3)

The Fourier transform can provide us with the activities of the signal in the frequency domain without any

reference to where/when these activities are accruing. This prevents us from further investigating the

representaüons in both time and frequency domain. The spread of neurons on human visual cortex,

however, indicates a joint spatial and spatial frequency decomposition where not only the frequency and
onentation of the objects are detected but their locations are registered as well. This demands another

tool which can analysis the signal in joint time-frequency domain.

Such a function can be achieved by the Short Time Fourier transform (STFr). The STFT is defmed as:

STFT(t,(.o) = Js(t)g(t —'r)exp(--jo.)t)dt (4)

The STFI can be explained as the Fourier transform of a signal that is windowed by the function g(t)

that shifts in the time domain. The STFT also states the contribution of the sine and cosine to the signal,

but it is restricted near the position (point) 'c in the time domain. The STFT with Gaussian window is

called Gabor transform.

The Gabor transform can be regarded as a filter-bank, whose impulse response in time domain is
Gaussian modulated by sine and cosine wave. As the frequency of the sine and cosine function (which is

in (4)) changes, a set of filters with the same window size are constructed. Gabor transform has been

used to simulate human visual system by many researchers [5], [6], [17].
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The problem of STFT is that the size of the window in the time domain is fixed, and the inflexibility of the

window size results in a fixed resolution in both time and frequency domain.

One dimensional Gabor transfonn basis functions can written as:

h(t)=exp[!j]cos(& .2ic.t) (5)

Figure 1 shows three basis functions where a = and j = 0,1,2.

Figure 1, one dimensional.Gabor transform basis functions. a) j=0, b) j=1, and c) j=2

If Gaussian is chosen as the window function in STFF, say Gabor transform, d and d1 are the standard

deviation of the Gaussian in time and frequency domain respectively. Gabor transform is often employed

because it meets the bound with equality [1]. Fixed resolution makes it impossible to detect a small
change in the time domain, for example, in Gabor transform, an edge can not be located with a precision

better than the standard deviation of the Gaussian [1]. See Figure 2,

Figure 2, a window function whose standard deviation is du and an edge whose variation is dx.

In Figure 2, if the variation (dx) is small compared to du, the response of Gabor transform changes
slowly. Therefore STFT (Gabor transform) is suitable for analysis of stationary signals. For non-
stationary signals, for example, in most natural images or textures, where flexible components are often

included, STFT can not give us effective support.

SPIE Vol. 2657 / 77
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Some of the pitfalls associated with STFT such as fixed resolution can be overcome by the application of

wavelets.

2.2 WAVELETS

Wavelets is a set of functions which are the translation and/or dilation of a "mother wavelet". It is, by no

means, a new technology. One of the most famous wavelet, Haar wavelet, was developed in the
beginning of this century. The idea of looking at signals in different resolution (scale) has also been

realized and applied in many areas. But the real life of wavelets began as Monet (geophysicist),
Grossmann (physicist) and Meyer (mathematician), provided it with strong mathematical foundation.
They called their work as "ondelettes" (wavelets). Daubechies and Mallat connected the wavelets theory

with digital signal processing in its discrete form [1], [2]. Through these, wavelets became a "popular

topic" in digital signal processing [3], [4], [12], image processing, especially in image coding [7] and
image texture analysis [8], [9], [10], [1 1].

Wavelets is defmed as:

hb,C (t) = .J=h* (!_±) (6)

the continuous wavelet transform is defmed as:1 r t—b
CWT(b, a) =— J h (—)s(t)dt (7)ia-' a
where s(t) is the signal, a and b are the dilation and translation factors respectively and h(t) is called

mother wavelet. Wavelets are a set of functions which are the translation (refer to scale b in (6)) and
dilation (refer to scale a in (6)) of the original mother wavelet. Wavelet transform is to decompose the
signal (s(t) in (7)) into the set of wavelet functions.

Wavelet transform obtains a flexible resolution in both time and transform domain. As a is large value,

the wavelet function is the dilation of the mother wavelet, which has low resolution in the time domain

and high resolution in the transform domain. As a becomes smaller, fmer resolution in lime domain and

coarser resolution in the transform domain are obtained.

The basis function for Gabor wavelets is expressed as:

h(t) =exp[cz2 •-j-Jcos(& •2ic•t) (8)

In signal analysis-synthesis process, orthonormal basis is essential, and so is in wavelet transform. An

analyzing wavelet should meet two conditions:

78 ISPIE Vol. 2657
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EIh(t2 < _ (9)

2J IH(w)12 dw < (10)

where H(o) is the Fourier transform of h(t). The first condition implies that the wavelet functions

should have finite energy, and the second condition, which is often called the admissibility condition,
implies that if H(w) is smooth then H(0) = 0. The current focus of the research in wavelets is to find

various optimal and orthogonal wavelets function for different tasks.

(c)

Figure 3, One dimensional Gabor wavelets basis functions where a = and a)j=0 b)j=1 and c)j=2

Employing continuous wavelet transform in practical applications is difficult due to its redundancies and

theoretical nature. In order to resolve this problem, the scale is discretized. If the scale a and b are
discrete values, the wavelet transform is called discrete wavelet transform. The scales are often taken as:

a=a' b=nb0a (11)

then the wavelets are represented as:

h,,m (t) = amI2h(amt — nb0) (12)

The discrete wavelet transform is convenient for the applications in discrete signal processing, especially

in digital image processing, because images are two dimensional discrete signals.

In this work, discrete form of wavelets is used. Similar to STFT, wavelets can be viewed as band-pass

filters. Equation (6) can be rewritten as:

Wf (t) =f * s(a,b) (13)
It could be interpreted that at the position b / a and with a scale a, the signal I is convoluted by the
wavelets, in another words, the signal is filtered by a band-pass filter whose impulse response is s(t). By

way of this interpretation, wavelets are connected to the idea of filters-bank.
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experiments a]so suggest that the simple cells in the visual cortex have receptive field profiles that

have fixed bandwidth in frequency and orientation domains.

The following Gabor elementary function is used in this work:

h(x,y) =exp[X ].expjiro0(xcose+ysine)] (19)

In Gabor transform, with its fixed Gaussian function, equation (19) can be rewritten as:

h(x,y) =exp[X ]exp[jira(xcose+ysinO)] (20)

where a= j = 0,1,2... and 0 =-, N =0,1, 2 ,..., k=0,1, 2,... , N— 1. The different choices of
N

frequency j and orientation in spatial --construct a set of filters.

The function of Gabor wavelets is:

h(x,y)=exp[—a2
X

'}•exp[j,r&(xcosO+ysinO)] (21)

where the choice of a and 0 are the same as that in Gabor transform. Comparing equation (20) and (21),

the distinct difference between Gabor transform and Gabor wavelets is easily detected. As the frequency

of the sinusoid changes, the window size remains the same in Gabor transform, but changes in the same

way as the sinusoid in Gabor wavelets. This can be seen in Figures 1 and 3 which refer to one
dimensional form of the Gabor transform and wavelets.

The elementary functions of Gabor transform and Gabor wavelets are used to construct spatial domain

filters. Each filter is made of a pair of filters which are the real and imaginary part of the complex

sinusoid. These pair are convoluted with texture image separately. The output of a filter is the modulation

of the output of complex sinusoid. It is computed as:
Ouzput = €JRO2UZPW + (22)

The mean of the outputs of one filter in different positions is stored as one feature of the texture. In
another words, every filter is employed to capture one feature of a texture. For each texture, a
multidimensional feature vector is constructed based upon the filters used.

4. RESULTS

The textures used here are all natural texture images from the Brodatz album in 256 gray-level and
256*256 pixels (Figure 4). Twenty samples of each of the textures is stored using a CCD camera. Ten
samples of each image are used to form the feature vector templates and all are used in the classification

SPIEVo!. 2657/81
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test. Confusion matrix is used to represent the experimental results. One hundred randomly selected
pixels of each image are used in forming the feature vector templates and the classification test. Sixteen
features are included which are four orientations (00,450,900,1350) and four frequencies (j = 0,1,2,3.

in (20), (21)). The windows size of the Gabor transform is fixed as 17* 17 in all frequencies of sinusoid,

and that of Gabor wavelets is changed which is always four times the standard deviation of the Gaussian.

The results of classification of these two methods are in table 1 and table 2. The comparison of the results

of using these two methods is in table 3.

The results show that Gabor wavelets performs better than using Gabor filters in texture classification.

5. DISCUSSION

From the results, it can be concluded that both Gabor transform and Gabor wavelets are efficient in image

texture classification. This is partly due to the joint frequency/spatial-frequency characteristic of Gabor

elementary function and partly due to the fact that they both are sensitive to frequency and orientation

variation. Gabor wavelets performs better because of its flexible resolution in both tune and frequency

domain.

Further research is needed in determining the optimal feature vector dimensionality. This could result in

an object-orientated construction of the filter-bank. The degree of elasticity of the receptive field profile

of the simple cells and their variance in response to changing environment is a challenging question that

has major implications for the artificial vision studies based on human visual system.

82 / SPIE Vol. 2657
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 19 1

1 20

2 19 1

3 20
4 1 17 2

5 19 1

6 20

7 20

8 20

9 3 17
10 20

11 18 2
12 20
13 20
14 20

15 20

16 19 1

17 20

18 20
19 20

Table 1, confusion matrix of Gabor wavelets.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 15 3 1 1

1 :13 5 2

2 18 2
3 18 2
4 :t 16 3

5 17 2 1

6 2 18

7 5 15

8 15 3 2
9 1 16 3

10 2 18

11 20
12 2 18

13 19 1

14 3 16 . 1

15 1 15 4
16 3 16 1

17 1 4 15

18 4 16
19 2 18

Table 2, confusion matrix of Gabor transform functions.
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Texture Wavelets GT Texture Wavelets GT
0: D2 95% 75% 10: D49 100% 90%
1: D3 100% 65% 11: D50 90% 100%
2: D9 100% 90% 12: D5 1 100% 90%
3: D12_ 100% 90% 13: D53 100% 95%
4:D14 85% 80% 14:D55 100% 80%
5: D17 95% 85% 15: D57 100% 75%
6: D20 100% 90% 16: D65 95% 80%
7: D24 100% 75% 17: D66 100% 75%
8: D26 100% 75% 18: D68 100% 80%
9: D35 85% 80% 19: D94 100% 90%

Table 3, results of the classification, where "Wavelets" is the test by Gabor wavelets and "GT" is the test

by Gabor transform.
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