299 research outputs found

    Deep Siamese Networks toward Robust Visual Tracking

    Get PDF
    Recently, Siamese neural networks have been widely used in visual object tracking to leverage the template matching mechanism. Siamese network architecture contains two parallel streams to estimate the similarity between two inputs and has the ability to learn their discriminative features. Various deep Siamese-based tracking frameworks have been proposed to estimate the similarity between the target and the search region. In this chapter, we categorize deep Siamese networks into three categories by the position of the merging layers as late merge, intermediate merge and early merge architectures. In the late merge architecture, inputs are processed as two separate streams and merged at the end of the network, while in the intermediate merge architecture, inputs are initially processed separately and merged intermediate well before the final layer. Whereas in the early merge architecture, inputs are combined at the start of the network and a unified data stream is processed by a single convolutional neural network. We evaluate the performance of deep Siamese trackers based on the merge architectures and their output such as similarity score, response map, and bounding box in various tracking challenges. This chapter will give an overview of the recent development in deep Siamese trackers and provide insights for the new developments in the tracking field

    Deep Learning Perspectives on Efficient Image Matching in Natural Image Databases

    Get PDF
    With the proliferation of digital content, efficient image matching in natural image databases has become paramount. Traditional image matching techniques, while effective to a certain extent, face challenges in dealing with the high variability inherent in natural images. This research delves into the application of deep learning models, particularly Convolutional Neural Networks (CNNs), Siamese Networks, and Triplet Networks, to address these challenges. We introduce various techniques to enhance efficiency, such as data augmentation, transfer learning, dimensionality reduction, efficient sampling, and the amalgamation of traditional computer vision strategies with deep learning. Our experimental results, garnered from specific dataset, demonstrate significant improvements in image matching efficiency, as quantified by metrics like precision, recall, F1-Score, and matching time. The findings underscore the potential of deep learning as a transformative tool for natural image database matching, setting the stage for further research and optimization in this domain

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews
    • …
    corecore