197 research outputs found

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Making Faces - State-Space Models Applied to Multi-Modal Signal Processing

    Get PDF

    Searching Spontaneous Conversational Speech:Proceedings of ACM SIGIR Workshop (SSCS2008)

    Get PDF

    Efficient Approaches for Voice Change and Voice Conversion Systems

    Get PDF
    In this thesis, the study and design of Voice Change and Voice Conversion systems are presented. Particularly, a voice change system manipulates a speaker’s voice to be perceived as it is not spoken by this speaker; and voice conversion system modifies a speaker’s voice, such that it is perceived as being spoken by a target speaker. This thesis mainly includes two sub-parts. The first part is to develop a low latency and low complexity voice change system (i.e. includes frequency/pitch scale modification and formant scale modification algorithms), which can be executed on the smartphones in 2012 with very limited computational capability. Although some low-complexity voice change algorithms have been proposed and studied, the real-time implementations are very rare. According to the experimental results, the proposed voice change system achieves the same quality as the baseline approach but requires much less computational complexity and satisfies the requirement of real-time. Moreover, the proposed system has been implemented in C language and was released as a commercial software application. The second part of this thesis is to investigate a novel low-complexity voice conversion system (i.e. from a source speaker A to a target speaker B) that improves the perceptual quality and identity without introducing large processing latencies. The proposed scheme directly manipulates the spectrum using an effective and physically motivated method – Continuous Frequency Warping and Magnitude Scaling (CFWMS) to guarantee high perceptual naturalness and quality. In addition, a trajectory limitation strategy is proposed to prevent the frame-by-frame discontinuity to further enhance the speech quality. The experimental results show that the proposed method outperforms the conventional baseline solutions in terms of either objective tests or subjective tests

    Open-set Speaker Identification

    Get PDF
    This study is motivated by the growing need for effective extraction of intelligence and evidence from audio recordings in the fight against crime, a need made ever more apparent with the recent expansion of criminal and terrorist organisations. The main focus is to enhance open-set speaker identification process within the speaker identification systems, which are affected by noisy audio data obtained under uncontrolled environments such as in the street, in restaurants or other places of businesses. Consequently, two investigations are initially carried out including the effects of environmental noise on the accuracy of open-set speaker recognition, which thoroughly cover relevant conditions in the considered application areas, such as variable training data length, background noise and real world noise, and the effects of short and varied duration reference data in open-set speaker recognition. The investigations led to a novel method termed “vowel boosting” to enhance the reliability in speaker identification when operating with varied duration speech data under uncontrolled conditions. Vowels naturally contain more speaker specific information. Therefore, by emphasising this natural phenomenon in speech data, it enables better identification performance. The traditional state-of-the-art GMM-UBMs and i-vectors are used to evaluate “vowel boosting”. The proposed approach boosts the impact of the vowels on the speaker scores, which improves the recognition accuracy for the specific case of open-set identification with short and varied duration of speech material
    corecore