137,349 research outputs found

    Few-shot Text Classification with Dual Contrastive Consistency

    Full text link
    In this paper, we explore how to utilize pre-trained language model to perform few-shot text classification where only a few annotated examples are given for each class. Since using traditional cross-entropy loss to fine-tune language model under this scenario causes serious overfitting and leads to sub-optimal generalization of model, we adopt supervised contrastive learning on few labeled data and consistency-regularization on vast unlabeled data. Moreover, we propose a novel contrastive consistency to further boost model performance and refine sentence representation. After conducting extensive experiments on four datasets, we demonstrate that our model (FTCC) can outperform state-of-the-art methods and has better robustness.Comment: 8 pages, 2 figures, under revie

    Towards Agile Text Classifiers for Everyone

    Full text link
    Text-based safety classifiers are widely used for content moderation and increasingly to tune generative language model behavior - a topic of growing concern for the safety of digital assistants and chatbots. However, different policies require different classifiers, and safety policies themselves improve from iteration and adaptation. This paper introduces and evaluates methods for agile text classification, whereby classifiers are trained using small, targeted datasets that can be quickly developed for a particular policy. Experimenting with 7 datasets from three safety-related domains, comprising 15 annotation schemes, led to our key finding: prompt-tuning large language models, like PaLM 62B, with a labeled dataset of as few as 80 examples can achieve state-of-the-art performance. We argue that this enables a paradigm shift for text classification, especially for models supporting safer online discourse. Instead of collecting millions of examples to attempt to create universal safety classifiers over months or years, classifiers could be tuned using small datasets, created by individuals or small organizations, tailored for specific use cases, and iterated on and adapted in the time-span of a day.Comment: Findings of EMNLP 202

    Music classification by transductive learning using bipartite heterogeneous networks

    Get PDF
    The popularization of music distribution in electronic format has increased the amount of music with incomplete metadata. The incompleteness of data can hamper some important tasks, such as music and artist recommendation. In this scenario, transductive classification can be used to classify the whole dataset considering just few labeled instances. Usually transductive classification is performed through label propagation, in which data are represented as networks and the examples propagate their labels through\ud their connections. Similarity-based networks are usually applied to model data as network. However, this kind of representation requires the definition of parameters, which significantly affect the classification accuracy, and presentes a high cost due to the computation of similarities among all dataset instances. In contrast, bipartite heterogeneous networks have appeared as an alternative to similarity-based networks in text mining applications. In these networks, the words are connected to the documents which they occur. Thus, there is no parameter or additional costs to generate such networks. In this paper, we propose the use of the bipartite network representation to perform transductive classification of music, using a bag-of-frames approach to describe music signals. We demonstrate that the proposed approach outperforms other music classification approaches when few labeled instances are available.Sao Paulo Research Foundation (FAPESP) (grants 2011/12823-6, 2012/50714-7, 2013/26151-5, and 2014/08996-0

    ICE: Enabling Non-Experts to Build Models Interactively for Large-Scale Lopsided Problems

    Full text link
    Quick interaction between a human teacher and a learning machine presents numerous benefits and challenges when working with web-scale data. The human teacher guides the machine towards accomplishing the task of interest. The learning machine leverages big data to find examples that maximize the training value of its interaction with the teacher. When the teacher is restricted to labeling examples selected by the machine, this problem is an instance of active learning. When the teacher can provide additional information to the machine (e.g., suggestions on what examples or predictive features should be used) as the learning task progresses, then the problem becomes one of interactive learning. To accommodate the two-way communication channel needed for efficient interactive learning, the teacher and the machine need an environment that supports an interaction language. The machine can access, process, and summarize more examples than the teacher can see in a lifetime. Based on the machine's output, the teacher can revise the definition of the task or make it more precise. Both the teacher and the machine continuously learn and benefit from the interaction. We have built a platform to (1) produce valuable and deployable models and (2) support research on both the machine learning and user interface challenges of the interactive learning problem. The platform relies on a dedicated, low-latency, distributed, in-memory architecture that allows us to construct web-scale learning machines with quick interaction speed. The purpose of this paper is to describe this architecture and demonstrate how it supports our research efforts. Preliminary results are presented as illustrations of the architecture but are not the primary focus of the paper

    Complex Event Recognition from Images with Few Training Examples

    Full text link
    We propose to leverage concept-level representations for complex event recognition in photographs given limited training examples. We introduce a novel framework to discover event concept attributes from the web and use that to extract semantic features from images and classify them into social event categories with few training examples. Discovered concepts include a variety of objects, scenes, actions and event sub-types, leading to a discriminative and compact representation for event images. Web images are obtained for each discovered event concept and we use (pretrained) CNN features to train concept classifiers. Extensive experiments on challenging event datasets demonstrate that our proposed method outperforms several baselines using deep CNN features directly in classifying images into events with limited training examples. We also demonstrate that our method achieves the best overall accuracy on a dataset with unseen event categories using a single training example.Comment: Accepted to Winter Applications of Computer Vision (WACV'17

    PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks

    Full text link
    Unsupervised text embedding methods, such as Skip-gram and Paragraph Vector, have been attracting increasing attention due to their simplicity, scalability, and effectiveness. However, comparing to sophisticated deep learning architectures such as convolutional neural networks, these methods usually yield inferior results when applied to particular machine learning tasks. One possible reason is that these text embedding methods learn the representation of text in a fully unsupervised way, without leveraging the labeled information available for the task. Although the low dimensional representations learned are applicable to many different tasks, they are not particularly tuned for any task. In this paper, we fill this gap by proposing a semi-supervised representation learning method for text data, which we call the \textit{predictive text embedding} (PTE). Predictive text embedding utilizes both labeled and unlabeled data to learn the embedding of text. The labeled information and different levels of word co-occurrence information are first represented as a large-scale heterogeneous text network, which is then embedded into a low dimensional space through a principled and efficient algorithm. This low dimensional embedding not only preserves the semantic closeness of words and documents, but also has a strong predictive power for the particular task. Compared to recent supervised approaches based on convolutional neural networks, predictive text embedding is comparable or more effective, much more efficient, and has fewer parameters to tune.Comment: KDD 201
    • …
    corecore