3,358 research outputs found

    Lightweight Probabilistic Deep Networks

    Full text link
    Even though probabilistic treatments of neural networks have a long history, they have not found widespread use in practice. Sampling approaches are often too slow already for simple networks. The size of the inputs and the depth of typical CNN architectures in computer vision only compound this problem. Uncertainty in neural networks has thus been largely ignored in practice, despite the fact that it may provide important information about the reliability of predictions and the inner workings of the network. In this paper, we introduce two lightweight approaches to making supervised learning with probabilistic deep networks practical: First, we suggest probabilistic output layers for classification and regression that require only minimal changes to existing networks. Second, we employ assumed density filtering and show that activation uncertainties can be propagated in a practical fashion through the entire network, again with minor changes. Both probabilistic networks retain the predictive power of the deterministic counterpart, but yield uncertainties that correlate well with the empirical error induced by their predictions. Moreover, the robustness to adversarial examples is significantly increased.Comment: To appear at CVPR 201

    Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks

    Full text link
    One of the challenges in modeling cognitive events from electroencephalogram (EEG) data is finding representations that are invariant to inter- and intra-subject differences, as well as to inherent noise associated with such data. Herein, we propose a novel approach for learning such representations from multi-channel EEG time-series, and demonstrate its advantages in the context of mental load classification task. First, we transform EEG activities into a sequence of topology-preserving multi-spectral images, as opposed to standard EEG analysis techniques that ignore such spatial information. Next, we train a deep recurrent-convolutional network inspired by state-of-the-art video classification to learn robust representations from the sequence of images. The proposed approach is designed to preserve the spatial, spectral, and temporal structure of EEG which leads to finding features that are less sensitive to variations and distortions within each dimension. Empirical evaluation on the cognitive load classification task demonstrated significant improvements in classification accuracy over current state-of-the-art approaches in this field.Comment: To be published as a conference paper at ICLR 201

    Preserving Differential Privacy in Convolutional Deep Belief Networks

    Full text link
    The remarkable development of deep learning in medicine and healthcare domain presents obvious privacy issues, when deep neural networks are built on users' personal and highly sensitive data, e.g., clinical records, user profiles, biomedical images, etc. However, only a few scientific studies on preserving privacy in deep learning have been conducted. In this paper, we focus on developing a private convolutional deep belief network (pCDBN), which essentially is a convolutional deep belief network (CDBN) under differential privacy. Our main idea of enforcing epsilon-differential privacy is to leverage the functional mechanism to perturb the energy-based objective functions of traditional CDBNs, rather than their results. One key contribution of this work is that we propose the use of Chebyshev expansion to derive the approximate polynomial representation of objective functions. Our theoretical analysis shows that we can further derive the sensitivity and error bounds of the approximate polynomial representation. As a result, preserving differential privacy in CDBNs is feasible. We applied our model in a health social network, i.e., YesiWell data, and in a handwriting digit dataset, i.e., MNIST data, for human behavior prediction, human behavior classification, and handwriting digit recognition tasks. Theoretical analysis and rigorous experimental evaluations show that the pCDBN is highly effective. It significantly outperforms existing solutions

    WordFences: Text localization and recognition

    Get PDF
    En col·laboració amb la Universitat de Barcelona (UB) i la Universitat Rovira i Virgili (URV)In recent years, text recognition has achieved remarkable success in recognizing scanned document text. However, word recognition in natural images is still an open problem, which generally requires time consuming post-processing steps. We present a novel architecture for individual word detection in scene images based on semantic segmentation. Our contributions are twofold: the concept of WordFence, which detects border areas surrounding each individual word and a unique pixelwise weighted softmax loss function which penalizes background and emphasizes small text regions. WordFence ensures that each word is detected individually, and the new loss function provides a strong training signal to both text and word border localization. The proposed technique avoids intensive post-processing by combining semantic word segmentation with a voting scheme for merging segmentations of multiple scales, producing an end-to-end word detection system. We achieve superior localization recall on common benchmark datasets - 92% recall on ICDAR11 and ICDAR13 and 63% recall on SVT. Furthermore, end-to-end word recognition achieves state-of-the-art 86% F-Score on ICDAR13

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table
    • …
    corecore