333 research outputs found

    Enhancing Energy Minimization Framework for Scene Text Recognition with Top-Down Cues

    Get PDF
    Recognizing scene text is a challenging problem, even more so than the recognition of scanned documents. This problem has gained significant attention from the computer vision community in recent years, and several methods based on energy minimization frameworks and deep learning approaches have been proposed. In this work, we focus on the energy minimization framework and propose a model that exploits both bottom-up and top-down cues for recognizing cropped words extracted from street images. The bottom-up cues are derived from individual character detections from an image. We build a conditional random field model on these detections to jointly model the strength of the detections and the interactions between them. These interactions are top-down cues obtained from a lexicon-based prior, i.e., language statistics. The optimal word represented by the text image is obtained by minimizing the energy function corresponding to the random field model. We evaluate our proposed algorithm extensively on a number of cropped scene text benchmark datasets, namely Street View Text, ICDAR 2003, 2011 and 2013 datasets, and IIIT 5K-word, and show better performance than comparable methods. We perform a rigorous analysis of all the steps in our approach and analyze the results. We also show that state-of-the-art convolutional neural network features can be integrated in our framework to further improve the recognition performance

    EAST: An Efficient and Accurate Scene Text Detector

    Full text link
    Previous approaches for scene text detection have already achieved promising performances across various benchmarks. However, they usually fall short when dealing with challenging scenarios, even when equipped with deep neural network models, because the overall performance is determined by the interplay of multiple stages and components in the pipelines. In this work, we propose a simple yet powerful pipeline that yields fast and accurate text detection in natural scenes. The pipeline directly predicts words or text lines of arbitrary orientations and quadrilateral shapes in full images, eliminating unnecessary intermediate steps (e.g., candidate aggregation and word partitioning), with a single neural network. The simplicity of our pipeline allows concentrating efforts on designing loss functions and neural network architecture. Experiments on standard datasets including ICDAR 2015, COCO-Text and MSRA-TD500 demonstrate that the proposed algorithm significantly outperforms state-of-the-art methods in terms of both accuracy and efficiency. On the ICDAR 2015 dataset, the proposed algorithm achieves an F-score of 0.7820 at 13.2fps at 720p resolution.Comment: Accepted to CVPR 2017, fix equation (3

    Text localization and recognition in natural scene images

    Get PDF
    Text localization and recognition (text spotting) in natural scene images is an interesting task that finds many practical applications. Algorithms for text spotting may be used in helping visually impaired subjects during navigation in unknown environments; building autonomous driving systems that automatically avoid collisions with pedestrians or automatically identify speed limits and warn the driver about possible infractions that are being committed; and to ease or solve some tedious and repetitive data entry tasks that are still manually carried out by humans. While Optical Character Recognition (OCR) from scanned documents is a solved problem, the same cannot be said for text spotting in natural images. In fact, this latest class of images contains plenty of difficult situations that algorithms for text spotting need to deal with in order to reach acceptable recognition rates. During my PhD research I focused my studies on the development of novel systems for text localization and recognition in natural scene images. The two main works that I have presented during these three years of PhD studies are presented in this thesis: (i) in my first work I propose a hybrid system which exploits the key ideas of region-based and connected components (CC)-based text localization approaches to localize uncommon fonts and writings in natural images; (ii) in my second work I describe a novel deep-based system which exploits Convolutional Neural Networks and enhanced stable CC to achieve good text spotting results on challenging data sets. During the development of both these methods, my focus has always been on maintaining an acceptable computational complexity and a high reproducibility of the achieved results

    Text localization and recognition in natural scene images

    Get PDF
    Text localization and recognition (text spotting) in natural scene images is an interesting task that finds many practical applications. Algorithms for text spotting may be used in helping visually impaired subjects during navigation in unknown environments; building autonomous driving systems that automatically avoid collisions with pedestrians or automatically identify speed limits and warn the driver about possible infractions that are being committed; and to ease or solve some tedious and repetitive data entry tasks that are still manually carried out by humans. While Optical Character Recognition (OCR) from scanned documents is a solved problem, the same cannot be said for text spotting in natural images. In fact, this latest class of images contains plenty of difficult situations that algorithms for text spotting need to deal with in order to reach acceptable recognition rates. During my PhD research I focused my studies on the development of novel systems for text localization and recognition in natural scene images. The two main works that I have presented during these three years of PhD studies are presented in this thesis: (i) in my first work I propose a hybrid system which exploits the key ideas of region-based and connected components (CC)-based text localization approaches to localize uncommon fonts and writings in natural images; (ii) in my second work I describe a novel deep-based system which exploits Convolutional Neural Networks and enhanced stable CC to achieve good text spotting results on challenging data sets. During the development of both these methods, my focus has always been on maintaining an acceptable computational complexity and a high reproducibility of the achieved results

    STEFANN: Scene Text Editor using Font Adaptive Neural Network

    Full text link
    Textual information in a captured scene plays an important role in scene interpretation and decision making. Though there exist methods that can successfully detect and interpret complex text regions present in a scene, to the best of our knowledge, there is no significant prior work that aims to modify the textual information in an image. The ability to edit text directly on images has several advantages including error correction, text restoration and image reusability. In this paper, we propose a method to modify text in an image at character-level. We approach the problem in two stages. At first, the unobserved character (target) is generated from an observed character (source) being modified. We propose two different neural network architectures - (a) FANnet to achieve structural consistency with source font and (b) Colornet to preserve source color. Next, we replace the source character with the generated character maintaining both geometric and visual consistency with neighboring characters. Our method works as a unified platform for modifying text in images. We present the effectiveness of our method on COCO-Text and ICDAR datasets both qualitatively and quantitatively.Comment: Accepted in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 202

    Content-Based Video Retrieval in Historical Collections of the German Broadcasting Archive

    Full text link
    The German Broadcasting Archive (DRA) maintains the cultural heritage of radio and television broadcasts of the former German Democratic Republic (GDR). The uniqueness and importance of the video material stimulates a large scientific interest in the video content. In this paper, we present an automatic video analysis and retrieval system for searching in historical collections of GDR television recordings. It consists of video analysis algorithms for shot boundary detection, concept classification, person recognition, text recognition and similarity search. The performance of the system is evaluated from a technical and an archival perspective on 2,500 hours of GDR television recordings.Comment: TPDL 2016, Hannover, Germany. Final version is available at Springer via DO
    • …
    corecore