8,902 research outputs found

    Detecting Traffic Information From Social Media Texts With Deep Learning Approaches

    Get PDF
    Mining traffic-relevant information from social media data has become an emerging topic due to the real-time and ubiquitous features of social media. In this paper, we focus on a specific problem in social media mining which is to extract traffic relevant microblogs from Sina Weibo, a Chinese microblogging platform. It is transformed into a machine learning problem of short text classification. First, we apply the continuous bag-of-word model to learn word embedding representations based on a data set of three billion microblogs. Compared to the traditional one-hot vector representation of words, word embedding can capture semantic similarity between words and has been proved effective in natural language processing tasks. Next, we propose using convolutional neural networks (CNNs), long short-term memory (LSTM) models and their combination LSTM-CNN to extract traffic relevant microblogs with the learned word embeddings as inputs. We compare the proposed methods with competitive approaches, including the support vector machine (SVM) model based on a bag of n-gram features, the SVM model based on word vector features, and the multi-layer perceptron model based on word vector features. Experiments show the effectiveness of the proposed deep learning approaches

    PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks

    Full text link
    Unsupervised text embedding methods, such as Skip-gram and Paragraph Vector, have been attracting increasing attention due to their simplicity, scalability, and effectiveness. However, comparing to sophisticated deep learning architectures such as convolutional neural networks, these methods usually yield inferior results when applied to particular machine learning tasks. One possible reason is that these text embedding methods learn the representation of text in a fully unsupervised way, without leveraging the labeled information available for the task. Although the low dimensional representations learned are applicable to many different tasks, they are not particularly tuned for any task. In this paper, we fill this gap by proposing a semi-supervised representation learning method for text data, which we call the \textit{predictive text embedding} (PTE). Predictive text embedding utilizes both labeled and unlabeled data to learn the embedding of text. The labeled information and different levels of word co-occurrence information are first represented as a large-scale heterogeneous text network, which is then embedded into a low dimensional space through a principled and efficient algorithm. This low dimensional embedding not only preserves the semantic closeness of words and documents, but also has a strong predictive power for the particular task. Compared to recent supervised approaches based on convolutional neural networks, predictive text embedding is comparable or more effective, much more efficient, and has fewer parameters to tune.Comment: KDD 201
    • …
    corecore