18,185 research outputs found

    Targeted mutagenesis using CRISPR-Cas9 in the chelicerate herbivore Tetranychus urticae

    Get PDF
    The use of CRISPR-Cas9 has revolutionized functional genetic work in many organisms, including more and more insect species. However, successful gene editing or genetic transformation has not yet been reported for chelicerates, the second largest group of terrestrial animals. Within this group, some mite and tick species are economically very important for agriculture and human health, and the availability of a gene-editing tool would be a significant advancement for the field. Here, we report on the use of CRISPR-Cas9 in the spider mite Tetranychus urticae. The ovary of virgin adult females was injected with a mix of Cas9 and sgRNAs targeting the phytoene desaturase gene. Natural mutants of this laterally transferred gene have previously shown an easy-to-score albino phenotype. Albino sons of injected virgin females were mated with wild-type females, and two independent transformed lines where created and further characterized. Albinism inherited as a recessive monogenic trait. Sequencing of the complete target-gene of both lines revealed two different lesions at expected locations near the PAM site in the target-gene. Both lines did not genetically complement each other in dedicated crosses, nor when crossed to a reference albino strain with a known genetic defect in the same gene. In conclusion, two independent mutagenesis events were induced in the spider mite T. urticae using CRISPR-Cas9, hereby providing proof-of-concept that CRISPR-Cas9 can be used to create gene knockouts in mites

    Resistance risk assessment of the novel complex II inhibitor pyflubumide in the polyphagous pest Tetranychus urticae

    Get PDF
    Pyflubumide is a novel selective carboxanilide acaricide that inhibits mitochondrial complex II of spider mite species such as Tetranychus urticae. We explored the baseline toxicity and potential cross-resistance risk of pyflubumide in a reference panel of T. urticae strains resistant to various acaricides with different modes of action. A cyenopyrafen-resistant strain (JPR) was identified as the only strain with low-to-moderate level of cross-resistance to pyflubumide (LC50 = 49.07 mg/L). In a resistance risk assessment approach, JPR was subsequently selected which led to two highly resistant strains JPR-R1 (RR = 466.7) and JPR-R2 (RR = 614.8). Interestingly, compared to adult females, resistance was much less pronounced in adult males and eggs of the two JPR-R strains. In order to elucidate resistance mechanisms, we first sequenced the complex II subunits in susceptible and resistant strains, but target-site insensitivity could not be detected. In contrast, synergism/antagonism experiments strongly suggested that cytochrome P450 monooxygenases are involved in pyflubumide resistance. We therefore conducted genome-wide gene expression experiments to investigate constitutive and induced expression patterns and documented the overexpression of five cytochrome P450 and four carboxyl/choline esterase genes in the JPR-R strains after pyflubumide exposure. Together, we provide a first resistance risk assessment of a novel complex II inhibitor and provide first evidence for metabolic resistance mediated by cytochrome P450s in T. urticae

    Some Tetranychoid Mites of Michigan

    Get PDF
    Excerpt: Tetranychoid mites are plant feeders, and many of them are of considerable economic importance. Prior to the present study, only seven species of these mites were known from Michigan; Oligonychus ilicis (McGregor) (McGregor, 1931); Tertranychus mcdanieli McGregor (McGregor, 1931; Pritchard and Baker, 1955); Euryteranychus buxi (Garman) (Ries, 1935; McGregor 1950); Tettranychus atlanticus McGregor (Tuttle and Baker, 1964); Bryobia praetiosa Koch, Panoychus ulmi (Koch), and Tetranychus telarius (L.) (Ghate and Howitt, 1965)

    Effects of density experience on mate guarding behavior by adult male Kanzawa spider mites

    Get PDF
    In the Kanzawa spider mite, Tetranychus kanzawai (Acari: Tetranychidae), adult males guard pre-reproductive quiescent females. I experimentally examined the effects of density experience during development and/or after adult emergence on precopulatory mate guarding behavior by T. kanzawai males. Mate guarding behavior was modified by density experience after adult emergence. When males had previously experienced high density after adult emergence (n = 71), 73.2% of them engaged in precopulatory mate guarding. In contrast, when males had previously experienced low density after adult emergence (n = 82), 61.0% of them did not guard females. Mate guarding with physical contact occurred more frequently when males had previously experienced a high density of potential rivals than when they had not, but the difference in behavior between the two groups of males was marginally not significant. Nevertheless, these results suggest overall that T. kanzawai males change mate guarding behavior in response to previously experienced density

    High-resolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides

    Get PDF
    Arthropod herbivores cause dramatic crop losses, and frequent pesticide use has led to widespread resistance in numerous species. One such species, the two-spotted spider mite, Tetranychus urticae, is an extreme generalist herbivore and a major worldwide crop pest with a history of rapidly developing resistance to acaricides. Mitochondrial Electron Transport Inhibitors of complex I (METI-Is) have been used extensively in the last 25 years to control T. urticae around the globe, and widespread resistance to each has been documented. METI-I resistance mechanisms in T. urticae are likely complex, as increased metabolism by cytochrome P450 monooxygenases as well as a target-site mutation have been linked with resistance. To identify loci underlying resistance to the METI-I acaricides fenpyroximate, pyridaben and tebufenpyrad without prior hypotheses, we crossed a highly METI-I-resistant strain of T. urticae to a susceptible one, propagated many replicated populations over multiple generations with and without selection by each compound, and performed bulked segregant analysis genetic mapping. Our results showed that while the known H92R target-site mutation was associated with resistance to each compound, a genomic region that included cytochrome P450-reductase (CPR) was associated with resistance to pyridaben and tebufenpyrad. Within CPR, a single nonsynonymous variant distinguished the resistant strain from the sensitive one. Furthermore, a genomic region linked with tebufenpyrad resistance harbored a non-canonical member of the nuclear hormone receptor 96 (NHR96) gene family. This NHR96 gene does not encode a DNA-binding domain (DBD), an uncommon feature in arthropods, and belongs to an expanded family of 47 NHR96 proteins lacking DBDs in T. urticae. Our findings suggest that although cross-resistance to METI-Is involves known detoxification pathways, structural differences in METI-I acaricides have also resulted in resistance mechanisms that are compound-specific

    Complex evolutionary dynamics of massively expanded chemosensory receptor families in an extreme generalist chelicerate herbivore

    Get PDF
    While mechanisms to detoxify plant produced, anti-herbivore compounds have been associated with plant host use by herbivores, less is known about the role of chemosensory perception in their life histories. This is especially true for generalists, including chelicerate herbivores that evolved herbivory independently from the more studied insect lineages. To shed light on chemosensory perception in a generalist herbivore, we characterized the chemosensory receptors (CRs) of the chelicerate two-spotted spider mite, Tetranychus urticae, an extreme generalist. Strikingly, T. urticae has more CRs than reported in any other arthropod to date. Including pseudogenes, 689 gustatory receptors were identified, as were 136 degenerin/Epithelial Na+ Channels (ENaCs) that have also been implicated as CRs in insects. The genomic distribution of T. urticae gustatory receptors indicates recurring bursts of lineage-specific proliferations, with the extent of receptor clusters reminiscent of those observed in the CR-rich genomes of vertebrates or C. elegans. Although pseudogenization of many gustatory receptors within clusters suggests relaxed selection, a subset of receptors is expressed. Consistent with functions as CRs, the genomic distribution and expression of ENaCs in lineage-specific T. urticae expansions mirrors that observed for gustatory receptors. The expansion of ENaCs in T. urticae to > 3-fold that reported in other animals was unexpected, raising the possibility that ENaCs in T. urticae have been co-opted to fulfill a major role performed by unrelated CRs in other animals. More broadly, our findings suggest an elaborate role for chemosensory perception in generalist herbivores that are of key ecological and agricultural importance

    Males of the two-spotted spider mite attempt to copulate with mated females: effects of double mating on fitness of either sex

    Get PDF
    In Tetranychus urticae (Acari: Tetranychidae), when the intervals between first and second copulation are more than 24 h, only the first copulation is effective for females. Therefore, adult males should copulate only with virgin females, but not with females that copulated more than 1 day ago. Indeed, T. urticae males preferred virgin females to mated females under dual choice conditions. In the absence of virgin females, however, 60% of males copulated with mated females (n = 30). Therefore, the effects of male copulation behaviour on male and mated-female fitness were examined, respectively. Since T. urticae is arrhenotokous (i.e., only daughters have genes derived from their father), the proportion of females among the offspring was used as an index of male fitness. After males had lived with/without a mated female, the males were allowed to copulate with a virgin female. The proportion of females among the offspring did not differ between males with and without a female. On the other hand, when mated females lived with an adult male, their egg production was lower than mated females without a male. These results suggest that males do not seem to obtain fitness benefit from the copulation behaviour and that mated females incur a fitness cost due to the male behaviour

    Acaricide resistance and genetic affinities of some selected populations of Tetranychus urticae Koch in New Zealand : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science (Horticultural) in Entomology at Massey University

    Get PDF
    A study of resistance to acaricides in a number of populations of the two-spotted spider mite, Tetranychus urticae, in New Zealand had been carried out. Natural genetic and cytoplasmic incompatibilities between populations were also investigated with a view to possible biological control of the pest. Facets of acaricide resistance that were studied included multi-resistance, cross-resistance, negatively correlated resistance and the inheritance of resistance. Chemicals used included an organophosphate representative (parathion-methyl), a carbamate (formetanate), an ungrouped compound (tricyclohexyltin hydroxide) and an organochlorine (dicofol). Cross-resistance was demonstrated between parathion-methyl and formetanate in five populations obtained from widely separate areas of New Zealand. The resistance to parathion of three strains was found to be inherited as a single dominant character and transmissible by both sexes. Cytoplasmic factors (or nucleo-cytoplasmic interactions) and minor genes were found to contribute slightly to the expression of total resistance. No resistance to tricyclohexyltin hydroxide (Plictran) and dicofol (Kelthane) was detected. High degrees of incompatibility (haploid egg lethality) were observed in the hybrids of crosses between the various populations. Chromosomal rearrangements in balanced, heterozygous conditions, in conjunction with the cytoplasm, were considered to be important factors determining the interpopulational sterilities. The interpopulational incompatibility phenomenon was found to be multi-factorial and not associated with the resistance factor. The egg mortalities of some backcross series which remained constantly high in spite of several crossings, implicated that the introduction of normal males to a resistant mite population in an enclosed area (e.g. in a glasshouse) might be a worthwhile proposition in the integrated control of spider mites. Backcross hybrids, on allowing to multiply randomly, were capable of forming new gene combinations, leading consequently to the formation of new strains which were genetically different from the original parents used in the backcross series

    Biocontrol of mites on berries : natural and introduced predatory mites

    Get PDF
    Phytoseiid predatory mites (Acari: Phytoseiidae) in Finland; strawberry, raspberry, currants and concluding remarks

    Comparison of thread-cutting behaviour in three specialist predatory mites to cope with complex webs of Tetranychus spider mites

    Get PDF
    Anti-predator defenses provided by complex webs of Tetranychus mites can severely impede the performance of generalist predatory mites, whereas this may not be true for specialist predatory mites. Although some specialist predatory mites have developed morphological protection to reduce the adverse effects of complex webs, little is known about their behavioral abilities to cope with the webs. In this study, we compared thread-cutting behavior of three specialist predatory mites, Phytoseiulus persimilis, Neoseiulus womersleyi and N. californicus, exhibited inside the complex web of T. urticae. No major difference was observed among them in the basic pattern of this behavior, using chelicerae and palps, and in the number of silken threads severed while moving inside the web. These results and observations suggest that each predator species cut many sticky silken threads to move inside the complex web without suffering from serious obstructio
    corecore