207,189 research outputs found

    Testing surface area with arbitrary accuracy

    Full text link
    Recently, Kothari et al.\ gave an algorithm for testing the surface area of an arbitrary set A[0,1]nA \subset [0, 1]^n. Specifically, they gave a randomized algorithm such that if AA's surface area is less than SS then the algorithm will accept with high probability, and if the algorithm accepts with high probability then there is some perturbation of AA with surface area at most κnS\kappa_n S. Here, κn\kappa_n is a dimension-dependent constant which is strictly larger than 1 if n2n \ge 2, and grows to 4/π4/\pi as nn \to \infty. We give an improved analysis of Kothari et al.'s algorithm. In doing so, we replace the constant κn\kappa_n with 1+η1 + \eta for η>0\eta > 0 arbitrary. We also extend the algorithm to more general measures on Riemannian manifolds.Comment: 5 page

    Fluctuating volume-current formulation of electromagnetic fluctuations in inhomogeneous media: incandecence and luminescence in arbitrary geometries

    Get PDF
    We describe a fluctuating volume--current formulation of electromagnetic fluctuations that extends our recent work on heat exchange and Casimir interactions between arbitrarily shaped homogeneous bodies [Phys. Rev. B. 88, 054305] to situations involving incandescence and luminescence problems, including thermal radiation, heat transfer, Casimir forces, spontaneous emission, fluorescence, and Raman scattering, in inhomogeneous media. Unlike previous scattering formulations based on field and/or surface unknowns, our work exploits powerful techniques from the volume--integral equation (VIE) method, in which electromagnetic scattering is described in terms of volumetric, current unknowns throughout the bodies. The resulting trace formulas (boxed equations) involve products of well-studied VIE matrices and describe power and momentum transfer between objects with spatially varying material properties and fluctuation characteristics. We demonstrate that thanks to the low-rank properties of the associatedmatrices, these formulas are susceptible to fast-trace computations based on iterative methods, making practical calculations tractable. We apply our techniques to study thermal radiation, heat transfer, and fluorescence in complicated geometries, checking our method against established techniques best suited for homogeneous bodies as well as applying it to obtain predictions of radiation from complex bodies with spatially varying permittivities and/or temperature profiles

    High Frequency Radar Wind Turbine Interference Community Working Group Report

    Get PDF
    Land-based High Frequency (HF) Radars provide critically important observations of the coastal ocean that will be adversely affected by the spinning blades of utility-scale wind turbines. Pathways to mitigate the interference of turbines on HF radar observations exist for small number of turbines; however, a greatly increased pace of research is required to understand how to minimize the complex interference patterns that will be caused by the large arrays of turbines planned for the U.S. outer continental shelf. To support the U.S.’s operational and scientific needs, HF radars must be able to collect high-quality measurements of the ocean’s surface inand around areas with significant numbers of wind turbines. This is a solvable problem, but given the rapid pace of wind energy development, immediate action is needed to ensure that HF radar wind turbine interference mitigation efforts keep pace with the planned build out of turbines

    Reconstruction of the Antenna Near-Field

    Get PDF
    Cílem disertační práce je navrhnout efektivně pracující algoritmus, který na základě bezfázového měření v blízkém poli antény bude schopen zrekonstruovat komplexní blízké pole antény resp. vyzařovací diagram antény ve vzdáleném poli. Na základě těchto úvah byly zkoumány vlastnosti minimalizačního algoritmu. Zejména byl analyzován a vhodně zvolen minimalizační přistup, optimalizační metoda a v neposlední řadě i optimalizační funkce tzv. funkcionál. Dále pro urychlení celého minimalizačního procesu byly uvažovány prvotní odhady. A na závěr byla do minimalizačního algoritmu zahrnuta myšlenka nahrazující hledané elektrické pole několika koeficienty. Na základě předchozích analýz byla navržená bezfázová metoda pro charakterizaci vyzařovacích vlastností antén. Tato metoda kombinuje globální optimalizaci s obrazovou kompresní metodou a s lokální metodou ve spojení s konvečním amplitudovým měřením na dvou površích. V našem případě je globální optimalizace použita k nalezení globálního minima minimalizovaného funkcionálu, kompresní metoda k redukci neznámých proměnných na apertuře antény a lokální metoda zajišťuje přesnější nalezení minima. Navržená metoda je velmi robustní a mnohem rychlejší než jiné dostupné minimalizační algoritmy. Další výzkum byl zaměřen na možnosti využití měřených amplitud pouze z jednoho měřícího povrchu pro rekonstrukci vyzařovacích charakteristik antén a využití nového algoritmu pro rekonstrukci fáze na válcové geometrii.The aim of this dissertation thesis is to design a very effective algorithm, which is able to reconstruct the antenna near-field and radiation patterns, respectively, from amplitude-only measurements. Under these circumstances, the properties of minimization algorithm were researched. The selection of the minimization approach, optimization technique and the appropriate functional were investigated and appropriately chosen. To reveal the global minimum area faster, the possibilities in the form of initial estimates for accelerating minimization algorithm were also considered. And finally, the idea to represent the unknown electric field distribution by a few coefficients was implicated into the minimization algorithm. The designed near-field phaseless approach for the antenna far-field characterization combines a global optimization, an image compression method and a local optimization in conjunction with conventional two-surface amplitude measurements. The global optimization method is used to minimize the functional, the image compression method is used to reduce the number of unknown variables, and the local optimization method is used to improve the estimate achieved by the previous method. The proposed algorithm is very robust and faster than comparable algorithms available. Other investigations were focused on possibilities of using amplitude from only single scanning surface for reconstruction of radiation patterns and the application of the novel phase retrieval algorithm for cylindrical geometry.

    A method for measuring the contact area in instrumented indentation testing by tip scanning probe microscopy imaging

    Get PDF
    The determination of the contact area is a key step to derive mechanical properties such as hardness or an elastic modulus by instrumented indentation testing. Two families of procedures are dedicated to extracting this area: on the one hand, post mortem measurements that require residual imprint imaging, and on the other hand, direct methods that only rely on the load vs. the penetration depth curve. With the development of built-in scanning probe microscopy imaging capabilities such as atomic force microscopy and indentation tip scanning probe microscopy, last generation indentation devices have made systematic residual imprint imaging much faster and more reliable. In this paper, a new post mortem method is introduced and further compared to three existing classical direct methods by means of a numerical and experimental benchmark covering a large range of materials. It is shown that the new method systematically leads to lower error levels regardless of the type of material. Pros and cons of the new method vs. direct methods are also discussed, demonstrating its efficiency in easily extracting mechanical properties with an enhanced confidence

    Satellite Imagery Multiscale Rapid Detection with Windowed Networks

    Full text link
    Detecting small objects over large areas remains a significant challenge in satellite imagery analytics. Among the challenges is the sheer number of pixels and geographical extent per image: a single DigitalGlobe satellite image encompasses over 64 km2 and over 250 million pixels. Another challenge is that objects of interest are often minuscule (~pixels in extent even for the highest resolution imagery), which complicates traditional computer vision techniques. To address these issues, we propose a pipeline (SIMRDWN) that evaluates satellite images of arbitrarily large size at native resolution at a rate of > 0.2 km2/s. Building upon the tensorflow object detection API paper, this pipeline offers a unified approach to multiple object detection frameworks that can run inference on images of arbitrary size. The SIMRDWN pipeline includes a modified version of YOLO (known as YOLT), along with the models of the tensorflow object detection API: SSD, Faster R-CNN, and R-FCN. The proposed approach allows comparison of the performance of these four frameworks, and can rapidly detect objects of vastly different scales with relatively little training data over multiple sensors. For objects of very different scales (e.g. airplanes versus airports) we find that using two different detectors at different scales is very effective with negligible runtime cost.We evaluate large test images at native resolution and find mAP scores of 0.2 to 0.8 for vehicle localization, with the YOLT architecture achieving both the highest mAP and fastest inference speed.Comment: 8 pages, 7 figures, 2 tables, 1 appendix. arXiv admin note: substantial text overlap with arXiv:1805.0951

    Development of a Degradation Model for the Collapse Analysis of Composite Aerospace Structures

    Get PDF
    For stiffened structures in compression the most critical damage mechanism leading to structural collapse is delamination or adhesive disbonding between the skin and stiffener. This paper presents the development of a numerical approach capable of simulating interlaminar crack growth in composite structures as a representation of this damage mecha-nism. A degradation methodology was proposed using shell layers connected at the nodes by user-defined multiple point constraints (MPCs), and then controlling the properties of these MPCs to simulate the initiation and propagation of delamination and disbonding. A fracture mechanics approach based on the Virtual Crack Closure Technique (VCCT) is used to detect growth at the delamination front. Numerical predictions using the degradation methodology were compared to experimental results for double cantilever beam (DCB) specimens to dem-onstrate the effectiveness of the current approach. Future development will focus on address-ing the apparent conservatism of the VCCT approach, and extending the application of the method to other specimen types and stiffened structures representative of composite fuselage designs. This work is part of the European Commission Project COCOMAT (Improved MA-Terial Exploitation at Safe Design of COmposite Airframe Structures by Accurate Simulation of COllapse), an ongoing four-year project that aims to exploit the large strength reserves of composite aerospace structures through more accurate prediction of collapse
    corecore