99 research outputs found

    Mismatch-Immune Successive-Approximation Techniques for Nanometer CMOS ADCs

    Full text link
    During the past decade, SAR ADCs have enjoyed increasing prominence due to their inherently scaling-friendly architecture. Several recent SAR ADC innovations focus on decreasing power consumption, mitigating thermal noise, and improving bandwidth, however most of those that use non-hybrid architectures are limited to moderate (8-10 bit) resolu- tion. Assuming an almost rail-to-rail dynamic range, comparator noise and DAC element mismatch constraints are critical but not insurmountable at 10 bits of resolution or less in sub-100nm processes. On the other hand, analysis shows that for medium-resolution ADCs (11-15 bits, depending on the LSB voltage of the converter), the mismatch sizing constraint still dominates unit capacitor sizing over the kT/C sampling noise constraint, and can only be mitigated by drawing increasingly larger capacitors. The focus of this work is to extend the scaling benefits of the SAR architecture to medium and higher ADC resolutions through mitigating and ultimately harnessing DAC element mismatch. This goal is achieved via a novel, completely reconfigurable capacitor DAC that allows the rearranging of capacitors to different trial groupings in the SAR cycle so that mismatch can be canceled. The DAC is implemented in a 12-bit SAR ADC in 65nm CMOS, and a nearly 2-bit improvement in linearity is demonstrated with a simple reconfiguration algorithm.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138630/1/ncolins_1.pd

    A system-on-chip microwave photonic processor solves dynamic RF interference in real time with picosecond latency

    Full text link
    Radio-frequency interference is a growing concern as wireless technology advances, with potentially life-threatening consequences like interference between radar altimeters and 5G cellular networks. Mobile transceivers mix signals with varying ratios over time, posing challenges for conventional digital signal processing (DSP) due to its high latency. These challenges will worsen as future wireless technologies adopt higher carrier frequencies and data rates. However, conventional DSPs, already on the brink of their clock frequency limit, are expected to offer only marginal speed advancements. This paper introduces a photonic processor to address dynamic interference through blind source separation (BSS). Our system-on-chip processor employs a fully integrated photonic signal pathway in the analogue domain, enabling rapid demixing of received mixtures and recovering the signal-of-interest in under 15 picoseconds. This reduction in latency surpasses electronic counterparts by more than three orders of magnitude. To complement the photonic processor, electronic peripherals based on field-programmable gate array (FPGA) assess the effectiveness of demixing and continuously update demixing weights at a rate of up to 305 Hz. This compact setup features precise dithering weight control, impedance-controlled circuit board and optical fibre packaging, suitable for handheld and mobile scenarios. We experimentally demonstrate the processor's ability to suppress transmission errors and maintain signal-to-noise ratios in two scenarios, radar altimeters and mobile communications. This work pioneers the real-time adaptability of integrated silicon photonics, enabling online learning and weight adjustments, and showcasing practical operational applications for photonic processing

    Waveform acquisition with resolutions exceeding those of the ADCs employed

    Get PDF
    This chapter discusses various software/firmware and hardware methods and architectures to improve the fidelity of the acquired waveforms beyond the vertical and horizontal resolutions that are possible with the ADC employed. The applicability of these approaches, and the limits on the enhancements that are achievable, depend upon the nature of the acquired waveform, and they are presented separately for one-shot, repeatable and repetitive waveforms. The possibilities of combining applicable methods in order to simultaneously increase both resolutions are also discussed. The consideration is illustrated by the simulation results and the acquired experimental waveforms relevant to the ultrasonic non-destructive evaluation

    Low harmonic distortion flash A/D converters incorporating dynamic element matching techniques

    Full text link
    New dynamic element matching techniques are shown to reduce the harmonic distortion and improve the spurious-free dynamic range of flash ADCs. Resistor chain mismatch errors are negated by randomly rearranging the resistors each sample by utilizing 5(2{dollar}\sp{b}{dollar}-1) digital switches and b + 1 random control signals for a b-bit flash ADC. The integral and differential nonlinearity of a non-ideal flash ADC are derived for three common resistor chain mismatch errors; namely, geometric mismatches, linear gradient mismatches, and dynamic mismatches. The transfer function of a non-ideal flash ADC is also derived and the converter output is shown to consist of a scaled copy of the input, a DC gain, and conversion noise that is a function of the resistor mismatches. A comprehensive summary of dynamic element matching techniques given in literature is provided. In addition, the DEM network introduced by Galton and Jensen is shown to be equivalent to the generalized-cube network used in parallel processing architectures. An alternative version of this network that uses logic gates is also proposed
    • …
    corecore