30,291 research outputs found

    Social Machinery and Intelligence

    Get PDF
    Social machines are systems formed by technical and human elements interacting in a structured manner. The use of digital platforms as mediators allows large numbers of human participants to join such mechanisms, creating systems where interconnected digital and human components operate as a single machine capable of highly sophisticated behaviour. Under certain conditions, such systems can be described as autonomous and goal-driven agents. Many examples of modern Artificial Intelligence (AI) can be regarded as instances of this class of mechanisms. We argue that this type of autonomous social machines has provided a new paradigm for the design of intelligent systems marking a new phase in the field of AI. The consequences of this observation range from methodological, philosophical to ethical. On the one side, it emphasises the role of Human-Computer Interaction in the design of intelligent systems, while on the other side it draws attention to both the risks for a human being and those for a society relying on mechanisms that are not necessarily controllable. The difficulty by companies in regulating the spread of misinformation, as well as those by authorities to protect task-workers managed by a software infrastructure, could be just some of the effects of this technological paradigm

    Consequentialism & Machine Ethics: Towards a Foundational Machine Ethic to Ensure the Right Action of Artificial Moral Agents

    Get PDF
    In this paper, I argue that Consequentialism represents a kind of ethical theory that is the most plausible to serve as a basis for a machine ethic. First, I outline the concept of an artificial moral agent and the essential properties of Consequentialism. Then, I present a scenario involving autonomous vehicles to illustrate how the features of Consequentialism inform agent action. Thirdly, an alternative Deontological approach will be evaluated and the problem of moral conflict discussed. Finally, two bottom-up approaches to the development of machine ethics are presented and briefly challenged

    Knowledge-based vision and simple visual machines

    Get PDF
    The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong

    Automated Speed and Lane Change Decision Making using Deep Reinforcement Learning

    Full text link
    This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network agent was trained in a simulated environment to handle speed and lane change decisions for a truck-trailer combination. In a highway driving case, it is shown that the method produced an agent that matched or surpassed the performance of a commonly used reference model. To demonstrate the generality of the method, the exact same algorithm was also tested by training it for an overtaking case on a road with oncoming traffic. Furthermore, a novel way of applying a convolutional neural network to high level input that represents interchangeable objects is also introduced
    • …
    corecore