4 research outputs found

    Testing Multiple Hypotheses through IMP weighted FDR Based on a Genetic Functional Network with Application to a New Zebrafish Transcriptome Study

    Get PDF
    In genome-wide studies, hundreds of thousands of hypothesis tests are performed simultaneously. Bonferroni correction and False Discovery Rate (FDR) can effectively control type I error but often yield a high false negative rate. We aim to develop a more powerful method to detect differentially expressed genes. We present a Weighted False Discovery Rate (WFDR) method that incorporate biological knowledge from genetic networks. We first identify weights using Integrative Multi-species Prediction (IMP) and then apply the weights in WFDR to identify differentially expressed genes through an IMP-WFDR algorithm. We performed a gene expression experiment to identify zebrafish genes that change expression in the presence of arsenic during a systemic Pseudomonas aeruginosa infection. Zebrafish were exposed to arsenic at 10 parts per billion and/or infected with P. aeruginosa. Appropriate controls were included. We then applied IMP-WFDR during the analysis of differentially expressed genes. We compared the mRNA expression for each group and found over 200 differentially expressed genes and several enriched pathways including defense response pathways, arsenic response pathways, and the Notch signaling pathway

    Functional Role of Zebrafish TLR Proteins

    Get PDF
    Project summary. Influenza virus infections lead to significant illness, mortality, and social disruption worldwide. Herein, the first studies establishing the zebrafish as a model for human influenza infection are presented and it is shown that influenza infection proceeds and can be resolved through similar mechanisms in zebrafish and humans (Gabor, et al.). Our laboratory has previously characterized a fish rhabdovirus infection model in the zebrafish (Phelan, et al.)

    Testing multiple hypotheses through IMP weighted FDR based on a genetic functional network with application to a new zebrafish transcriptome study

    No full text
    corecore