3,466 research outputs found

    Size-Change Termination, Monotonicity Constraints and Ranking Functions

    Full text link
    Size-Change Termination (SCT) is a method of proving program termination based on the impossibility of infinite descent. To this end we may use a program abstraction in which transitions are described by monotonicity constraints over (abstract) variables. When only constraints of the form x>y' and x>=y' are allowed, we have size-change graphs. Both theory and practice are now more evolved in this restricted framework then in the general framework of monotonicity constraints. This paper shows that it is possible to extend and adapt some theory from the domain of size-change graphs to the general case, thus complementing previous work on monotonicity constraints. In particular, we present precise decision procedures for termination; and we provide a procedure to construct explicit global ranking functions from monotonicity constraints in singly-exponential time, which is better than what has been published so far even for size-change graphs.Comment: revised version of September 2

    Polynomial Interpretations for Higher-Order Rewriting

    Get PDF
    The termination method of weakly monotonic algebras, which has been defined for higher-order rewriting in the HRS formalism, offers a lot of power, but has seen little use in recent years. We adapt and extend this method to the alternative formalism of algebraic functional systems, where the simply-typed lambda-calculus is combined with algebraic reduction. Using this theory, we define higher-order polynomial interpretations, and show how the implementation challenges of this technique can be tackled. A full implementation is provided in the termination tool WANDA

    12th International Workshop on Termination (WST 2012) : WST 2012, February 19–23, 2012, Obergurgl, Austria / ed. by Georg Moser

    Get PDF
    This volume contains the proceedings of the 12th International Workshop on Termination (WST 2012), to be held February 19–23, 2012 in Obergurgl, Austria. The goal of the Workshop on Termination is to be a venue for presentation and discussion of all topics in and around termination. In this way, the workshop tries to bridge the gaps between different communities interested and active in research in and around termination. The 12th International Workshop on Termination in Obergurgl continues the successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig (2009), and Edinburgh (2010). The 12th International Workshop on Termination did welcome contributions on all aspects of termination and complexity analysis. Contributions from the imperative, constraint, functional, and logic programming communities, and papers investigating applications of complexity or termination (for example in program transformation or theorem proving) were particularly welcome. We did receive 18 submissions which all were accepted. Each paper was assigned two reviewers. In addition to these 18 contributed talks, WST 2012, hosts three invited talks by Alexander Krauss, Martin Hofmann, and Fausto Spoto

    Forward Analysis for WSTS, Part III: Karp-Miller Trees

    Get PDF
    This paper is a sequel of "Forward Analysis for WSTS, Part I: Completions" [STACS 2009, LZI Intl. Proc. in Informatics 3, 433-444] and "Forward Analysis for WSTS, Part II: Complete WSTS" [Logical Methods in Computer Science 8(3), 2012]. In these two papers, we provided a framework to conduct forward reachability analyses of WSTS, using finite representations of downward-closed sets. We further develop this framework to obtain a generic Karp-Miller algorithm for the new class of very-WSTS. This allows us to show that coverability sets of very-WSTS can be computed as their finite ideal decompositions. Under natural effectiveness assumptions, we also show that LTL model checking for very-WSTS is decidable. The termination of our procedure rests on a new notion of acceleration levels, which we study. We characterize those domains that allow for only finitely many accelerations, based on ordinal ranks
    corecore