144,046 research outputs found

    The level of occlusion of included bark affects the strength of bifurcations in hazel (Corylus avellana L.)

    Get PDF
    Bark-included junctions in trees are considered a defect as the bark weakens the union between the branches. To more accurately assess this weakening effect, 241 bifurcations from young specimens of hazel (Corylus avellana L.), of which 106 had bark inclusions, were harvested and subjected to rupture tests. Three-point bending of the smaller branches acted as a benchmark for the relative strength of the bifurcations. Bifurcations with included bark failed at higher displacements, and their modulus of rupture was 24% lower than normally formed bifurcations, while stepwise regression showed that the best predictors of strength in these bark-included bifurcations were the diameter ratio and width of the bark inclusion, which explained 16.6% and 8.1% of the variability, respectively. Cup-shaped, bark-included bifurcations where included bark was partially occluded by xylem were found, on average, to be 36% stronger than those, where included bark was situated at the bifurcation apex. These findings show that there are significant gradations in the strength of bark-included bifurcations in juvenile hazel trees that relate directly to the level of occlusion of the bark into the bifurcation. It therefore may be possible to assess the extent of the defect that a bark-included bifurcation represents in a tree by assessing the relative level of occlusion of the included bark

    Understanding the complexity of #SAT using knowledge compilation

    Full text link
    Two main techniques have been used so far to solve the #P-hard problem #SAT. The first one, used in practice, is based on an extension of DPLL for model counting called exhaustive DPLL. The second approach, more theoretical, exploits the structure of the input to compute the number of satisfying assignments by usually using a dynamic programming scheme on a decomposition of the formula. In this paper, we make a first step toward the separation of these two techniques by exhibiting a family of formulas that can be solved in polynomial time with the first technique but needs an exponential time with the second one. We show this by observing that both techniques implicitely construct a very specific boolean circuit equivalent to the input formula. We then show that every beta-acyclic formula can be represented by a polynomial size circuit corresponding to the first method and exhibit a family of beta-acyclic formulas which cannot be represented by polynomial size circuits corresponding to the second method. This result shed a new light on the complexity of #SAT and related problems on beta-acyclic formulas. As a byproduct, we give new handy tools to design algorithms on beta-acyclic hypergraphs

    First order convergence of matroids

    Get PDF
    The model theory based notion of the first order convergence unifies the notions of the left-convergence for dense structures and the Benjamini-Schramm convergence for sparse structures. It is known that every first order convergent sequence of graphs with bounded tree-depth can be represented by an analytic limit object called a limit modeling. We establish the matroid counterpart of this result: every first order convergent sequence of matroids with bounded branch-depth representable over a fixed finite field has a limit modeling, i.e., there exists an infinite matroid with the elements forming a probability space that has asymptotically the same first order properties. We show that neither of the bounded branch-depth assumption nor the representability assumption can be removed.Comment: Accepted to the European Journal of Combinatoric

    Surface Split Decompositions and Subgraph Isomorphism in Graphs on Surfaces

    Get PDF
    The Subgraph Isomorphism problem asks, given a host graph G on n vertices and a pattern graph P on k vertices, whether G contains a subgraph isomorphic to P. The restriction of this problem to planar graphs has often been considered. After a sequence of improvements, the current best algorithm for planar graphs is a linear time algorithm by Dorn (STACS '10), with complexity 2O(k)O(n)2^{O(k)} O(n). We generalize this result, by giving an algorithm of the same complexity for graphs that can be embedded in surfaces of bounded genus. At the same time, we simplify the algorithm and analysis. The key to these improvements is the introduction of surface split decompositions for bounded genus graphs, which generalize sphere cut decompositions for planar graphs. We extend the algorithm for the problem of counting and generating all subgraphs isomorphic to P, even for the case where P is disconnected. This answers an open question by Eppstein (SODA '95 / JGAA '99)

    SNLS Spectroscopy: Testing for Evolution in Type Ia Supernovae

    Get PDF
    Aims: We present a quantitative study of a new data set of high redshift Type Ia supernovae spectra, observed at the Gemini telescopes during the first 34 months of the Supernova Legacy Survey. During this time 123 supernovae candidates were observed, of which 87 have been identified as SNe Ia at a median redshift of z=0.720. Spectra from the entire second year of the survey and part of the third year (59 total SNe candidates with 46 confirmed SNe Ia) are published here for the first time. The spectroscopic measurements made on this data set are used determine if these distant SNe comprise a population similar to those observed locally. Methods: Rest-frame equivalent width and ejection velocity measurements are made on four spectroscopic features. Corresponding measurements are presented for a set of 167 spectra from 24 low-z SNe Ia from the literature. Results: We show that there exists a sample at high redshift with properties similar to nearby SNe. No significant difference was found between the distributions of measurements at low and high redsift for three of the features. The fourth feature displays a possible difference that should be investigated further. Correlations between Type Ia SNe properties and host galaxy morphology were also found to be similar at low and high z, and within each host galaxy class we see no evidence for redshift-evolution in SN properties. A new correlation between SNe Ia peak magnitude and the equivalent width of SiII absorption is presented. We demonstrate that this correlation reduces the scatter in SNe Ia luminosity distances in a manner consistent with the lightcurve shape-luminosity corrections that are used for Type Ia SNe cosmology. Conclusions: We show that this new sample of SNLS SNe Ia has spectroscopic properties similar to nearby objects. (Abridged)Comment: Accepted for publication in Astronomy and Astrophysic
    • …
    corecore