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Abstract
The optimal solutions obtained by flux balance analysis (FBA) are typically not unique. Flux modules have
recently been shown to be a very useful tool to simplify and decompose the space of FBA-optimal solutions.
Since yield-maximization is sometimes not the primary objective encountered in vivo, we are also interested
in understanding the space of sub-optimal solutions. Unfortunately, the flux modules are too restrictive and
not suited for this task. We present a generalization, called k-module, which compensates the limited
applicability of flux modules to the space of sub-optimal solutions. Intuitively, a k-module is a sub-network
with low connectivity to the rest of the network. Recursive application of k-modules yields a hierarchical
decomposition of the metabolic network, which is also known as branch decomposition in matroid theory. In
particular, decompositions computed by existing methods, like the null-space-based approach, introduced
by Poolman et al. [(2007) J. Theor. Biol. 249, 691–705] can be interpreted as branch decompositions. With
k-modules we can now compare alternative decompositions of metabolic networks to the classical sub-
systems of glycolysis, tricarboxylic acid (TCA) cycle, etc. They can be used to speed up algorithmic problems
[theoretically shown for elementary flux modes (EFM) enumeration] and have the potential to present
computational solutions in a more intuitive way independently from the classical sub-systems.

Introduction
Constraint based methods have proven to be very successful
in the analysis of metabolic networks [1,2], which are used to
model metabolic capabilities and predict behaviours of organ-
isms. In contrast with kinetic models, constraint-based meta-
bolic network models do not aim to predict a single phen-
otype, but a space of biologically possible phenotypes. This
is achieved by excluding unrealistic phenotypes using con-
straints. This reduces the data requirements enormously such
that also large models with thousands of reactions can be built.

Because of the size of the networks, however, even the
interplay of very simple constraints can yield very complex
and high-dimensional solution spaces that are very hard
to comprehensively analyse. This is already the case for
networks solely based on the steady-state assumption and
irreversibility constraints, which are the basic assumptions
for methods like flux balance analysis (FBA) [3,4] and
related methods. The steady-state assumption states that
every metabolite must be produced at the same rate as it
is consumed. Formally, a vector of reaction rates (flux vector)
υ ∈ R

R is in steady-state if it satisfies

Sv = 0,

where S is the stoichiometric matrix. We use R to denote the
set of all reactions and M to denote the set of all metabolites.
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With a set Irrev ⊆ R of reactions that are only allowed to
operate in forward direction, the full steady-state flux space
is obtained, as given below:

{v ∈ R
R : SV = 0, vIrrev � 0}

Although extreme pathways [5] or elementary flux modes
(EFM) [6,7] can comprehensively characterize the solution
space based on easily understandable pathways, the number
of pathways explodes with the size of the network. This
makes these approaches only applicable to small networks.

Therefore, many methods try to determine only special
properties of the network. For example, FBA asks for the
maximal biomass yield for a given uptake of nutrients [3,4].
Although the space of optimal yield fluxes (optimal yield
flux space) also contains many solutions [8,9]; Kelk et al. [10]
discovered a method that allows a comprehensive pathway-
based description for the optimal yield flux space of many
genome-scale networks. They observed that the optimal yield
flux space can be decomposed into flux modules. For a flux
space P ⊆ R

R, a P-module is a set of reactions A ⊆ R for
which there exists a vector d ∈ R

M with

SAvA = d for all v ∈ P,

where SA denotes the sub-matrix of S with only columns
corresponding to the reactions in A. Similarly, υA is the sub-
vector of υ with only entries corresponding to reactions in
A. With this definition, originally introduced by Müller and
Bockmayr [11], the flux modules can be efficiently computed
[12]. By computing the pathways through each module, a
comprehensive pathway-based description can be obtained
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Figure 1 Example of a toy network

The reactions in A = {r1, . . . , r10} have three boundary metabolites and form a 2-module.
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efficiently [13]. However, this unfortunately only works for
the optimal yield space, because for the full steady-state flux
space (without yield-optimality condition) no interesting flux
modules can typically be found.

In the study by Reimers and Stougie [14], we introduced
the concept of k-modules to overcome the limitations of
flux modules. There, we followed a mathematical approach
and considered the general problem of vertex enumeration
of polyhedra. Here, we will now focus on the application
to metabolic networks and the biological interpretation of
k-modules, while keeping the mathematical overhead to a
minimum.

With k-modules, we can define a hierarchical decom-
position of metabolic networks that is similar to tree-
decompositions and tree-width in graph theory [14]. In
parameterized complexity theory, there exist many results
that show that, if a graph has low tree-width, many otherwise
NP-hard (problems that can not be solved in polynomial time
unless all problems that can be solved in non-deterministic
polynomial time (NP) can be solved in polynomial time)
problems can be solved efficiently in polynomial time [15,16].
This gives us the chance to also obtain similar results for
metabolic networks.

In the section on ‘k-modules’, we will introduce and
define k-modules. They will then form the basis for the
hierarchical decompositions discussed in the section ‘Branch
decomposition’. Finally, an application is given in the section
‘Application: EFM enumeration’ by considering the problem
of EFM enumeration.

k-modules
Let us consider the network shown in Figure 1 and the set A =
{r1, . . . , r10} of reactions. The metabolites B = {m1, m2, m3}
are each involved in a reaction of A and also in one of the
other reactions. These metabolites form the boundary of A
and therefore connect A to the rest of the network. Therefore,

we call them the boundary metabolites B(A) of A:

B (A) : = {m ∈ M : Smr �= 0 �= Sms ∃r ∈ A, s /∈ A}

We observe that for any set of reactions A, we can compute
how well A is connected to the rest of the network using the
formula below:

μ(A) := |B(A)| .

We argue that a set of reactions A with low connectivity
μ(A) should be easy to analyse by itself, because the
interaction with the rest of the network that could influence
the interpretation of A is low.

However, we also observe for the set A from Figure 1 that
m1 is always produced at the rate by which m2 is consumed
(in real networks this can happen for example with currency
metabolites like ATP and ADP). Hence, the interaction of A
through m2 is already given by the interaction through m1

with the rest of the network. To deal with such redundancies,
we use the concept of k-modules.

A set of reactions A ⊆ R is a P-k-module, if there exists a
d ∈ R

k and a matrix D ∈ R
M×k (interface) such that for every

υ ∈ P there exists an α ∈ R
k with

SAυA = d + Dα

We simply write k-module if P is the full steady-state flux
space and the network contains no blocked reactions.

The set A from the example of Figure 1 is a 2-module,
because we can choose

D =
m1

m2

m3

⎛
⎜⎝

1 0
−1 0
0 1

⎞
⎟⎠

The notion of k-module allows us now to define an
alternative connectivity function that does not only consider
network topology but also stoichiometries:

λ (A) : = min
{
k : A is a k − module

}
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To improve the reader’s understanding of k-modules and
their relation to the previously defined P-modules, we here
list a few properties that hold in general:

� μ(A) = μ(R \ A)
� λ(A) = λ(R \ A)
� λ(A) � μ(A)
� λ(A) � |A| (note that μ(A) � |A| does not hold in general)
� λ(A) � |R \ A|
� A is a P-module if and only if A is a P-0-module (i.e., A is

a 0-module if P is the full steady-state flux space without
blocked reactions).

Furthermore, we want to remark that the simplifications
[12] that make an efficient computation of flux modules
possible, also apply to k-modules. This means that as soon
as all reactions with fixed reaction rate have been identified,
the connectivity function λ can be computed based on linear
algebra alone [14], i.e. we have:

λ (A) = λ (A∩ V) ,

where V is the set of reactions with variable flux.
Furthermore, if all reactions can carry variable flux, then λ

depends on the stoichiometric matrix alone. For V = R, this
leads to the surprising result that [14]:

λ(A) = rank(SA) + rank(SR\A) − rank(SR).

Since the rank of a matrix can be efficiently computed,
we can also compute λ efficiently. For example, in the case
of the Escherichia coli iAF1260 network and its sub-system
annotations, we computed that glycolysis/gluconeogenesis
has a connectivity of 15 and the citric acid cycle has a
connectivity of 12. A complete list can be found in the
Supplementary Material.

Branch decomposition
Although we can compute λ(A) efficiently for a given A,
we are still left with the problem of finding ‘interesting’ sets
of reactions A with low λ(A). In particular, it is not really
clear what an ‘interesting’ set of reactions is. We observe by
the properties mentioned above that there are many sets of
reactions, where λ(A) is low (for example if A contains only
one reaction or if A contains all but one reaction), but which
are clearly not interesting.

We conclude that we want to find sets of reactions A where
A is large, the complement R \ A is large and λ(A) is low.
However, if A contains many reactions, we will be interested
to understand A more deeply. Hence, we want to be able
to split A recursively into smaller k-modules. This leads us
to the concept of branch decompositions and branch width
[17,18]. Branch width is related to the more popular concept
of tree width, which is used to measure how tree-like a graph
is. In contrast with tree width, branch-width has a natural
extension to matroids and, thus, also to metabolic networks.

A branch-decomposition is a sub-cubic tree, i.e. all nodes
have either degree 3 or they are leaves. Every leaf is uniquely

Figure 2 A branch decomposition of the example network in

Figure 1

The edges are annotated with the corresponding value of the

connectivity function, except edges incident to leaves. Edges incident

to leaves correspond to k-modules containing only one reaction. Hence,

they have connectivity 1.

r5

r8

r7 r6

r9

r1 r2

r10

r3

r4

r11 r12

r13

r14

r17

r15

r16

Module A

2 3 2 2 2

2

2

2

1

2

2

4

2

2

associated to a reaction of the network. An example is
shown in Figure 2. We observe that if we remove an edge
e of the tree, we get two connected components. Let A be
the set of reactions associated to the leaves of one of the
connected components. We observe that R \ A is the set
of reactions associated to the leaves of the other connected
component. Hence, we can annotate the edge e with the
value of the connectivity function λ(A) = λ(R \ A). Note
that, alternatively, we can do the same with the connectivity
function μ. Furthermore, we observe that by deleting the
edge e, we get two rooted binary trees, each rooted at a
vertex that was incident to e. These rooted binary trees give
a straightforward rule on how to recursively split the k-
module A (respectively the k-module R \ A) into two smaller
k-modules. In the example of Figure 2 the reaction set A =
{r1, . . . , r10} would be split up into the reaction set {r1, r2, r5,
. . . , r10} with connectivity 2 and the fully coupled reactions
{r3, r4} with connectivity 1.

The largest value with which an edge of a branch-
decomposition is annotated is called the branch width of
the branch decomposition. For the example of Figure 1, we
see in Figure 2 a branch-decomposition with branch width
4, because A’ : = {r11, r12, r13, r14} is only a 4-module, i.e.
λ(A’) = 4. We can now turn the question of finding an
interesting k-module into the question of finding a branch-
decomposition with low branch width. In particular, we
can consider a metabolic network modular if we can find
a branch-decomposition with low branch width.

Computing branch decompositions for metabolic
networks
Unfortunately, it is NP-hard to find a branch-decomposition
with minimal branch width. There exist theoretical results on
how to solve this problem in polynomial time for low branch-
width instances [19,20]. However, these algorithms are not
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Figure 3 Excerpt of branch decomposition computed using a variant of Poolman’s method [22] for the E. coli core network

All non-dashed leaves belong to the pentose phosphate pathway.
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likely to be practical, which is why we need to use heuristics.
Heuristics have been developed by Ma et al. [21]. Core idea
is to compute a similarity matrix by computing the similarity
for each pair of reactions. Interestingly, Ma et al. [21] use
a similarity measure, which is closely related to the one
introduced by Poolman et al. [22]. Indeed, the decomposition
computed by Poolman et al. [22] is a branch decomposition.
In Figure 3 an excerpt of the branch decomposition computed
for an E. coli core network [23] is shown. The full version can
be found in the Supplementary Material.

In Table 1 we have listed upper bounds on the branch
widths for a set of genome-scale networks computed
using variants of Poolman’s method. The methods for
computing the branch decompositions are described in the
Supplementary Material and they are implemented in the
cbmpy toolbox (cbmpy.sourceforge.net).

Application: EFM enumeration
In the study by Reimers and Stougie [14], we have shown that
the set of EFM can theoretically be efficiently enumerated if
the branch width of the network is low. To be more precise,
we show that given a branch decomposition of branch-width

Table 1 Upper bounds on branch-width for some genome-scale

metabolic networks

Network Reactions Branch width

E. coli core 95 13

E. coli iJR904 1075 40

E. coli iAF1260 2382 59

Helicobacter pylori iIT341 554 26

Homo sapiens recon 1 3742 99

H. sapiens recon 2 7440 146

Methanosarcina barkeri iAF692 690 29

Mycobacterium tuberculosis iNJ661 1025 35

Staphylococcus aureus iSB619 743 39

Saccharomyces cerevisiae iND750 1266 53

k, we can enumerate all EFM in time

O(|R||EFM|2k+2t)

where t is the time needed to solve a linear program (LP)
and |EFM| is the number of EFM [14]. Although this is the
first result that shows that EFM can be enumerated in total
polynomial time, it unfortunately is not very practical due to
the |EFM|2k + 2 term.
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Without going into details (we refer to Reimers and
Stougie’s work [14] for that), the idea is to enumerate
recursively pathways that correspond to EFM through the
k-modules in the branch decomposition, i.e. the pathways
of a k-module C, which is split into two k-modules A and
B, can be computed from the pathways through A and B.
The bad runtime bound arises from the fact that it is hard to
bind the number of pathways through each k-module well
enough.

Conclusion
In this article we have shown how we can use k-modules to
measure how well connected sub-systems are to the rest of
the network. Whereas this measure is similar to counting the
number of metabolites on the boundary, it is stoichiometry-
based and hence it smoothly deals with redundancies due to
coupled metabolites.

By recursively decomposing a network using branch
decompositions, k-modules give us a measure of modularity.
Unfortunately, it is very hard to compute the best branch
decomposition. Therefore, we use heuristics, such as the
method by Poolman et al. [22]. Although this method
gives us a branch decomposition from which we can
recognize familiar sub-networks, its branch width is not
very small. In addition, the connectivity of many subsystems
as annotated in the E. coli iAF1260 model is also very
large compared with their size. Therefore, we conclude
that the high branch width computed by our algorithm is
probably not due to its lack of a quality guarantee, but
because metabolic networks are not very modular (in the k-
modules sense).

Acknowledgements

I thank Timo Maarleveld, Frank Bruggeman, Brett Olivier, Marie-

France Sagot and Leen Stougie for insightful discussions.

Funding

This work was supported by the European Research Consortium

for Informatics and Mathematics through an Alain Bensoussan

Fellowship.

References
1 Papin, A.J., Stelling, J., Price, N.D., Klamt, S., Schuster, S. and Palsson, B.Ø.

(2004) Comparison of network-based pathway analysis methods. Trends
Biotechnol. 22, 400–405 CrossRef PubMed

2 Price, N.D., Reed, J.L. and Palsson, B.Ø. (2004) Genome-scale models of
microbial cells: evaluating the consequences of constraints. Nat. Rev.
Microbiol. 2, 886–897 CrossRef PubMed

3 Orth, J.D., Thiele, I. and Palsson, B.Ø. (2010) What is flux balance
analysis? Nat. Biotechnol. 28, 245–248

4 Varma, A. and Palsson, B.Ø. (1994) Metabolic flux balancing: basic
concepts, scientific and practical use. Nat. Biotechnol. 12, 994–998
CrossRef

5 Schilling, C.H., Letscher, D. and Palsson, B.Ø. (2000) Theory for the
systemic definition of metabolic pathways and their use in interpreting
metabolic function from a pathway-oriented perspective. J. Theor. Biol.
203, 229–248 CrossRef PubMed

6 Schuster, S. and Hilgetag, C. (1994) On elementary flux modes in
biochemical systems at steady state. J. Biol. Syst. 2, 165–182
CrossRef

7 Schuster, S., Fell, D.A. and Dandekar, T. (2000) A general definition of
metabolic pathways useful for systematic organization and analysis of
complex metabolic networks. Nat. Biotechnol. 18, 326–332
CrossRef PubMed

8 Mahadevan, R. and Schilling, C. (2003) The effects of alternate optimal
solutions in constraint-based genome-scale metabolic models. Metab.
Eng. 5, 264–276 CrossRef PubMed

9 Khannapho, C., Zhao, H., Bonde, B.L., Kierzek, A.M., Avignone-Rossa, C.A.
and Bushell, M.E. (2008) Selection of objective function in genome scale
flux balance analysis for process feed development in antibiotic
production. Metab. Eng. 10, 227–233 CrossRef PubMed

10 Kelk, S.M., Olivier, B.G., Stougie, L. and Bruggeman, F.J. (2012) Optimal
flux spaces of genome-scale stoichiometric models are determined by a
few subnetworks. Sci. Rep. 2, 580 CrossRef PubMed

11 Müller, A.C. and Bockmayr, A. (2014) Flux modules in metabolic
networks. J. Math. Biol. 69, 1151–1179 CrossRef PubMed

12 Reimers, A.C., Bruggeman, F.J., Olivier, B.G. and Stougie, L. (2015) Fast
flux module detection using matroid theory. J. Comput. Biol. 22, 414–424
CrossRef PubMed

13 Maarleveld, T.R., Wortel, M., Olivier, B.G., Teusink, B. and Bruggeman, F.J.
(2015) Interplay between constraints, objectives, and optimality for
genome-scale stoichiometric models. PLoS Comput. Biol. 11, e1004166
CrossRef PubMed

14 Reimers, A.C. and Stougie, L. (2014) A decomposition theory for vertex
enumeration of convex polyhedra., arXiv:1404.5584 [cs.CG]

15 Arnborg, S. (1985) Efficient algorithms for combinatorial problems on
graphs with bounded decomposability - a survey. BIT Numerical Math.
25, 1–23 CrossRef

16 Cook, W. and Seymour, P. (2003) Tour merging via
branch-decomposition. Informs J. Comput. 15, 233–248
CrossRef

17 Hicks, I.V., Koster, A.M.C.A. and Kolotoğlu, E. (2005) Branch and tree
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