7,522 research outputs found

    Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

    Full text link
    Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals of tens of milliseconds. Low-power wireless technology is preferred for its low cost, small form factor, and flexibility, especially if the devices support multi-hop communication. So far, however, feedback control over wireless multi-hop networks has only been shown for update intervals on the order of seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance (e.g., jitter and message loss), and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. Using experiments on a cyber-physical testbed with 20 wireless nodes and multiple cart-pole systems, we are the first to demonstrate and evaluate feedback control and coordination over wireless multi-hop networks for update intervals of 20 to 50 milliseconds.Comment: Accepted final version to appear in: 10th ACM/IEEE International Conference on Cyber-Physical Systems (with CPS-IoT Week 2019) (ICCPS '19), April 16--18, 2019, Montreal, QC, Canad

    The Design and Demonstration of the Ultralight Testbed

    Get PDF
    In this paper we present the motivation, the design, and a recent demonstration of the UltraLight testbed at SC|05. The goal of the Ultralight testbed is to help meet the data-intensive computing challenges of the next generation of particle physics experiments with a comprehensive, network- focused approach. UltraLight adopts a new approach to networking: instead of treating it traditionally, as a static, unchanging and unmanaged set of inter-computer links, we are developing and using it as a dynamic, configurable, and closely monitored resource that is managed from end-to-end. To achieve its goal we are constructing a next-generation global system that is able to meet the data processing, distribution, access and analysis needs of the particle physics community. In this paper we will first present early results in the various working areas of the project. We then describe our experiences of the network architecture, kernel setup, application tuning and configuration used during the bandwidth challenge event at SC|05. During this Challenge, we achieved a record-breaking aggregate data rate in excess of 150 Gbps while moving physics datasets between many Grid computing sites

    The Ultralight project: the network as an integrated and managed resource for data-intensive science

    Get PDF
    Looks at the UltraLight project which treats the network interconnecting globally distributed data sets as a dynamic, configurable, and closely monitored resource to construct a next-generation system that can meet the high-energy physics community's data-processing, distribution, access, and analysis needs

    Safe, Remote-Access Swarm Robotics Research on the Robotarium

    Get PDF
    This paper describes the development of the Robotarium -- a remotely accessible, multi-robot research facility. The impetus behind the Robotarium is that multi-robot testbeds constitute an integral and essential part of the multi-agent research cycle, yet they are expensive, complex, and time-consuming to develop, operate, and maintain. These resource constraints, in turn, limit access for large groups of researchers and students, which is what the Robotarium is remedying by providing users with remote access to a state-of-the-art multi-robot test facility. This paper details the design and operation of the Robotarium as well as connects these to the particular considerations one must take when making complex hardware remotely accessible. In particular, safety must be built in already at the design phase without overly constraining which coordinated control programs the users can upload and execute, which calls for minimally invasive safety routines with provable performance guarantees.Comment: 13 pages, 7 figures, 3 code samples, 72 reference

    The Motivation, Architecture and Demonstration of Ultralight Network Testbed

    Get PDF
    In this paper we describe progress in the NSF-funded Ultralight project and a recent demonstration of Ultralight technologies at SuperComputing 2005 (SC|05). The goal of the Ultralight project is to help meet the data-intensive computing challenges of the next generation of particle physics experiments with a comprehensive, network-focused approach. Ultralight adopts a new approach to networking: instead of treating it traditionally, as a static, unchanging and unmanaged set of inter-computer links, we are developing and using it as a dynamic, configurable, and closely monitored resource that is managed from end-to-end. Thus we are constructing a next-generation global system that is able to meet the data processing, distribution, access and analysis needs of the particle physics community. In this paper we present the motivation for, and an overview of, the Ultralight project. We then cover early results in the various working areas of the project. The remainder of the paper describes our experiences of the Ultralight network architecture, kernel setup, application tuning and configuration used during the bandwidth challenge event at SC|05. During this Challenge, we achieved a record-breaking aggregate data rate in excess of 150 Gbps while moving physics datasets between many sites interconnected by the Ultralight backbone network. The exercise highlighted the benefits of Ultralight's research and development efforts that are enabling new and advanced methods of distributed scientific data analysis

    Sequential Decision Making with Untrustworthy Service Providers

    No full text
    In this paper, we deal with the sequential decision making problem of agents operating in computational economies, where there is uncertainty regarding the trustworthiness of service providers populating the environment. Specifically, we propose a generic Bayesian trust model, and formulate the optimal Bayesian solution to the exploration-exploitation problem facing the agents when repeatedly interacting with others in such environments. We then present a computationally tractable Bayesian reinforcement learning algorithm to approximate that solution by taking into account the expected value of perfect information of an agent's actions. Our algorithm is shown to dramatically outperform all previous finalists of the international Agent Reputation and Trust (ART) competition, including the winner from both years the competition has been run
    corecore