977 research outputs found

    Calibrating rhythmic stimulation parameters to individual electroencephalography markers: The consistency of individual alpha frequency in practical lab settings

    Get PDF
    Rhythmic stimulation can be applied to modulate neuronal oscillations. Such ‘entrainment’ is optimized when stimulation frequency is individually calibrated based on magneto/encephalography markers. It remains unknown how consistent such individual markers are across days/sessions, within a session, or across cognitive states, hemispheres and estimation methods, especially in a realistic, practical, lab setting. We here estimated individual alpha frequency (IAF) repeatedly from short electroencephalography (EEG) measurements at rest or during an attention task (cognitive state), using single parieto-occipital electrodes in 24 participants on 4 days (between-sessions), with multiple measurements over an hour on 1 day (within-session). First, we introduce an algorithm to automatically reject power spectra without a sufficiently clear peak to ensure unbiased IAF estimations. Then we estimated IAF via the traditional ‘maximum’ method and a ‘Gaussian fit’ method. IAF was reliable within- and between-sessions for both cognitive states and hemispheres, though task-IAF estimates tended to be more variable. Overall, the ‘Gaussian fit’ method was more reliable than the ‘maximum’ method. Furthermore, we evaluated how far from an approximated ‘true’ task-related IAF the selected ‘stimulation frequency’ was, when calibrating this frequency based on a short rest-EEG, a short task-EEG, or simply selecting 10 Hz for all participants. For the ‘maximum’ method, rest-EEG calibration was best, followed by task-EEG, and then 10 Hz. For the ‘Gaussian fit’ method, rest-EEG and task-EEG-based calibration were similarly accurate, and better than 10 Hz. These results lead to concrete recommendations about valid, and automated, estimation of individual oscillation markers in experimental and clinical settings

    Decomposing age effects in EEG alpha power

    Full text link
    Increasing life expectancy is prompting the need to understand how the brain changes during healthy aging. Research utilizing electroencephalography (EEG) has found that the power of alpha oscillations decrease from adulthood on. However, non-oscillatory (aperiodic) components in the data may confound results and thus require re-investigation of these findings. Thus, the present report analyzed a pilot and two additional independent samples (total N = 533) of resting-state EEG from healthy young and elderly individuals. A newly developed algorithm was utilized that allows the decomposition of the measured signal into periodic and aperiodic signal components. By using multivariate sequential Bayesian updating of the age effect in each signal component, evidence across the datasets was accumulated. It was hypothesized that previously reported age-related alpha power differences will largely diminish when total power is adjusted for the aperiodic signal component. First, the age-related decrease in total alpha power was replicated. Concurrently, decreases of the intercept and slope (i.e. exponent) of the aperiodic signal component were observed. Findings on aperiodic-adjusted alpha power indicated that this general shift of the power spectrum leads to an overestimation of the true age effects in conventional analyses of total alpha power. Thus, the importance of separating neural power spectra into periodic and aperiodic signal components is highlighted. However, also after accounting for these confounding factors, the sequential Bayesian updating analysis provided robust evidence that aging is associated with decreased aperiodic-adjusted alpha power. While the relation of the aperiodic component and aperiodic-adjusted alpha power to cognitive decline demands further investigation, the consistent findings on age effects across independent datasets and high test-retest reliabilities support that these newly emerging measures are reliable markers of the aging brain. Hence, previous interpretations of age-related decreases in alpha power are reevaluated, incorporating changes in the aperiodic signal

    MEG sensor and source measures of visually induced gamma-band oscillations are highly reliable

    Get PDF
    High frequency brain oscillations are associated with numerous cognitive and behavioral processes. Non-invasive measurements using electro-/magnetoencephalography (EEG/MEG) have revealed that high frequency neural signals are heritable and manifest changes with age as well as in neuropsychiatric illnesses. Despite the extensive use of EEG/MEG-measured neural oscillations in basic and clinical research, studies demonstrating test–retest reliability of power and frequency measures of neural signals remain scarce. Here, we evaluated the test–retest reliability of visually induced gamma (30–100 Hz) oscillations derived from sensor and source signals acquired over two MEG sessions. The study required participants (N = 13) to detect the randomly occurring stimulus acceleration while viewing a moving concentric grating. Sensor and source MEG measures of gamma-band activity yielded comparably strong reliability (average intraclass correlation, ICC = 0.861). Peak stimulus-induced gamma frequency (53–72 Hz) yielded the highest measures of stability (ICCsensor = 0.940; ICCsource = 0.966) followed by spectral signal change (ICCsensor = 0.890; ICCsource = 0.893) and peak frequency bandwidth (ICCsensor = 0.856; ICCsource = 0.622). Furthermore, source-reconstruction significantly improved signal-to-noise for spectral amplitude of gamma activity compared to sensor estimates. Our assessments highlight that both sensor and source derived estimates of visually induced gamma-band oscillations from MEG signals are characterized by high test–retest reliability, with source derived oscillatory measures conferring an improvement in the stability of peak-frequency estimates. Importantly, our finding of high test–retest reliability supports the feasibility of pharma-MEG studies and longitudinal aging or clinical studies

    Test-retest reliability of resting-state EEG in young and older adults

    Full text link
    The quantification of resting-state electroencephalography (EEG) is associated with a variety of measures. These include power estimates at different frequencies, microstate analysis, and frequency-resolved source power and connectivity analyses. Resting-state EEG metrics have been widely used to delineate the manifestation of cognition and to identify psychophysiological indicators of age-related cognitive decline. The reliability of the utilized metrics is a prerequisite for establishing robust brain-behavior relationships and clinically relevant indicators of cognitive decline. To date, however, test-retest reliability examination of measures derived from resting human EEG, comparing different resting-state measures between young and older participants, within the same adequately powered dataset, is lacking. The present registered report examined test-retest reliability in a sample of 95 young (age range: 20-35 years) and 93 older (age range: 60-80 years) participants. A good-to-excellent test-retest reliability was confirmed in both age groups for power estimates on both scalp and source levels as well as for the individual alpha peak power and frequency. Partial confirmation was observed for hypotheses stating good-to-excellent reliability of microstates measures and connectivity. Equal levels of reliability between the age groups were confirmed for scalp-level power estimates and partially so for source-level power and connectivity. In total, five out of the nine postulated hypotheses were empirically supported and confirmed good-to-excellent reliability of the most commonly reported resting-state EEG metrics

    Reflections of idiographic long-term memory characteristics in resting-state neuroimaging data

    Get PDF
    Translational applications of cognitive science depend on having predictive models at the individual, or idiographic, level. However, idiographic model parameters, such as working memory capacity, often need to be estimated from specific tasks, making them dependent on task-specific assumptions. Here, we explore the possibility that idiographic parameters reflect an individual's biology and can be identified from task-free neuroimaging measures. To test this hypothesis, we correlated a reliable behavioral trait, the individual rate of forgetting in long-term memory, with a readily available task-free neuroimaging measure, the resting-state EEG spectrum. Using an established, adaptive fact-learning procedure, the rate of forgetting for verbal and visual materials was measured in a sample of 50 undergraduates from whom we also collected eyes-closed resting-state EEG data. Statistical analyses revealed that the individual rates of forgetting were significantly correlated across verbal and visual materials. Importantly, both rates correlated with resting-state power levels in the low (13–15 Hz) and upper (15–17 Hz) portion of the beta frequency bands. These correlations were particularly strong for visuospatial materials, were distributed over multiple fronto-parietal locations, and remained significant even after a correction for multiple comparisons (False Discovery Rate) and after robust correlation methods were applied. These results suggest that computational models could be individually tailored for prediction using idiographic parameter values derived from inexpensive, task-free imaging recordings

    Frontal theta and posterior alpha in resting EEG: A critical examination of convergent and discriminant validity

    Full text link
    Prior research has identified two resting EEG biomarkers with potential for predicting functional outcomes in depression: theta current density in frontal brain regions (especially rostral anterior cingulate cortex) and alpha power over posterior scalp regions. As little is known about the discriminant and convergent validity of these putative biomarkers, a thorough evaluation of these psychometric properties was conducted toward the goal of improving clinical utility of these markers. Resting 71‐channel EEG recorded from 35 healthy adults at two sessions (1‐week retest) were used to systematically compare different quantification techniques for theta and alpha sources at scalp (surface Laplacian or current source density [CSD]) and brain (distributed inverse; exact low resolution electromagnetic tomography [eLORETA]) level. Signal quality was evaluated with signal‐to‐noise ratio, participant‐level spectra, and frequency PCA covariance decomposition. Convergent and discriminant validity were assessed within a multitrait‐multimethod framework. Posterior alpha was reliably identified as two spectral components, each with unique spatial patterns and condition effects (eyes open/closed), high signal quality, and good convergent and discriminant validity. In contrast, frontal theta was characterized by one low‐variance component, low signal quality, lack of a distinct spectral peak, and mixed validity. Correlations between candidate biomarkers suggest that posterior alpha components constitute reliable, convergent, and discriminant biometrics in healthy adults. Component‐based identification of spectral activity (CSD/eLORETA‐fPCA) was superior to fixed, a priori frequency bands. Improved quantification and conceptualization of frontal theta is necessary to determine clinical utility.Magnitude of frontal theta (rostral ACC eLORETA source amplitude) and posterior alpha (spectral components of scalp current source density) at rest have been considered candidate EEG biomarkers of depression outcomes. Given inconsistent findings, we examined the discriminant and convergent validity of these measures in healthy adults. Unlike theta, two distinct alpha components constituted reliable, convergent, and discriminant biometrics. While results have marked implications for clinical utility, we make several recommendations for improving the psychometric properties of resting frontal theta.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153675/1/psyp13483.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153675/2/psyp13483_am.pd

    A benchmark for prediction of psychiatric multimorbidity from resting EEG data in a large pediatric sample

    Full text link
    Psychiatric disorders are among the most common and debilitating illnesses across the lifespan and begin usually during childhood and adolescence, which emphasizes the importance of studying the developing brain. Most of the previous pediatric neuroimaging studies employed traditional univariate statistics on relatively small samples. Multivariate machine learning approaches have a great potential to overcome the limitations of these approaches. On the other hand, the vast majority of existing multivariate machine learning studies have focused on differentiating between children with an isolated psychiatric disorder and typically developing children. However, this line of research does not reflect the real-life situation as the majority of children with a clinical diagnosis have multiple psychiatric disorders (multimorbidity), and consequently, a clinician has the task to choose between different diagnoses and/or the combination of multiple diagnoses. Thus, the goal of the present benchmark is to predict psychiatric multimorbidity in children and adolescents. For this purpose, we implemented two kinds of machine learning benchmark challenges: The first challenge targets the prediction of the seven most prevalent DSM-V psychiatric diagnoses for the available data set, of which each individual can exhibit multiple ones concurrently (i.e. multi-task multi-label classification). Based on behavioral and cognitive measures, a second challenge focuses on predicting psychiatric symptom severity on a dimensional level (i.e. multiple regression task). For the present benchmark challenges, we will leverage existing and future data from the biobank of the Healthy Brain Network (HBN) initiative, which offers a unique large-sample dataset (N = 2042) that provides a wide array of different psychiatric developmental disorders and true hidden data sets. Due to limited real-world practicability and economic viability of MRI measurements, the present challenge will permit only resting state EEG data and demographic information to derive predictive models. We believe that a community driven effort to derive predictive markers from these data using advanced machine learning algorithms can help to improve the diagnosis of psychiatric developmental disorders

    Short-Term EEG Spectral Pattern as a Single Event in EEG Phenomenology

    Get PDF
    Spectral decomposition, to this day, still remains the main analytical paradigm for the analysis of EEG oscillations. However, conventional spectral analysis assesses the mean characteristics of the EEG power spectra averaged out over extended periods of time and/or broad frequency bands, thus resulting in a “static” picture which cannot reflect adequately the underlying neurodynamic. A relatively new promising area in the study of EEG is based on reducing the signal to elementary short-term spectra of various types in accordance with the number of types of EEG stationary segments instead of using averaged power spectrum for the whole EEG. It is suggested that the various perceptual and cognitive operations associated with a mental or behavioural condition constitute a single distinguishable neurophysiological state with a distinct and reliable spectral pattern. In this case, one type of short-term spectral pattern may be considered as a single event in EEG phenomenology. To support this assumption the following issues are considered in detail: (a) the relations between local EEG short-term spectral pattern of particular type and the actual state of the neurons in underlying network and a volume conduction; (b) relationship between morphology of EEG short-term spectral pattern and the state of the underlying neurodynamical system i.e. neuronal assembly; (c) relation of different spectral pattern components to a distinct physiological mechanism; (d) relation of different spectral pattern components to different functional significance; (e) developmental changes of spectral pattern components; (f) heredity of the variance in the individual spectral pattern and its components; (g) intra-individual stability of the sets of EEG short-term spectral patterns and their percent ratio; (h) discrete dynamics of EEG short-term spectral patterns. Functional relevance (consistency) of EEG short-term spectral patterns in accordance with the changes of brain functional state, cognitive task and with different neuropsychopathologies is demonstrated
    corecore