16,977 research outputs found

    3D mixing in hot Jupiter atmospheres. I. application to the day/night cold trap in HD 209458b

    Full text link
    Hot Jupiters exhibit atmospheric temperatures ranging from hundreds to thousands of Kelvin. Because of their large day-night temperature differences, condensable species that are stable in the gas phase on the dayside, such as TiO and silicates, may condense and gravitationally settle on the nightside. Atmospheric circulation may counterbalance this tendency to gravitationally settle. This three dimensional (3D) mixing of chemical species has not previously been studied for hot Jupiters, yet it is crucial to assess the existence and distribution of TiO and silicates in the atmospheres of these planets. We perform 3D global circulation models of HD209458b including passive tracers that advect with the 3D flow, including a source/sink on the nightside to represent condensation and gravitational settling of haze particles. We show that global advection patterns produce strong vertical mixing that can keep condensable species lofted as long as they are trapped in particles of sizes of a few microns or less on the night side. We show that vertical mixing results not from small-scale convection but from the large-scale circulation driven by the day-night heating contrast. Although this vertical mixing is not diffusive in any rigorous sense, a comparison of our results with idealized diffusion models allows a rough estimate of the vertical diffusion coefficient. Kzz=5x10**4/Sqrt(Pbar) m2/s can be used in 1D models of HD 209458b. Moreover, our models exhibit strong spatial and temporal variability in the tracer concentration that could result in observable variations during transit or secondary eclipse measurements. Finally, we apply our model to the case of TiO in HD209458b and show that the day-night cold trap would deplete TiO if it condenses into particles bigger than a few microns on the planet's night side, making it unable to create the observed stratosphere of the planet.Comment: Accepted in A&A in August 2013 http://dx.doi.org/10.1051/0004-6361/20132113

    Modelling the local and global cloud formation on HD 189733b

    Get PDF
    Context. Observations suggest that exoplanets such as HD 189733b form clouds in their atmospheres which have a strong feedback onto their thermodynamical and chemical structure, and overall appearance. Aims. Inspired by mineral cloud modelling efforts for Brown Dwarf atmospheres, we present the first spatially varying kinetic cloud model structures for HD 189733b. Methods. We apply a 2-model approach using results from a 3D global radiation-hydrodynamic simulation of the atmosphere as input for a detailed, kinetic cloud formation model. Sampling the 3D global atmosphere structure with 1D trajectories allows us to model the spatially varying cloud structure on HD 189733b. The resulting cloud properties enable the calculation of the scattering and absorption properties of the clouds. Results. We present local and global cloud structure and property maps for HD 189733b. The calculated cloud properties show variations in composition, size and number density of cloud particles which are strongest between the dayside and nightside. Cloud particles are mainly composed of a mix of materials with silicates being the main component. Cloud properties, and hence the local gas composition, change dramatically where temperature inversions occur locally. The cloud opacity is dominated by absorption in the upper atmosphere and scattering at higher pressures in the model. The calculated 8{\mu}m single scattering Albedo of the cloud particles are consistent with Spitzer bright regions. The cloud particles scattering properties suggest that they would sparkle/reflect a midnight blue colour at optical wavelengths.Comment: Accepted for publication (A&A) - 21/05/2015 (Low Resolution Maps

    Large-scale solar wind flow around Saturn's nonaxisymmetric magnetosphere

    Get PDF
    The interaction between the solar wind and a magnetosphere is fundamental to the dynamics of a planetary system. Here, we address fundamental questions on the large-scale magnetosheath flow around Saturn using a 3D magnetohydrodynamic (MHD) simulation. We find Saturn's polar-flattened magnetosphere to channel ~20% more flow over the poles than around the flanks at the terminator. Further, we decompose the MHD forces responsible for accelerating the magnetosheath plasma to find the plasma pressure gradient as the dominant driver. This is by virtue of a high-beta magnetosheath, and in turn, the high-MA bow shock. Together with long-term magnetosheath data by the Cassini spacecraft, we present evidence of how nonaxisymmetry substantially alters the conditions further downstream at the magnetopause, crucial for understanding solar wind-magnetosphere interactions such as reconnection and shear flow-driven instabilities. We anticipate our results to provide a more accurate insight into the global conditions upstream of Saturn and the outer planets.Comment: Accepted for publication in Journal of Geophysical Journal: Space Physic

    Radiative Hydrodynamic Simulations of HD209458b: Temporal Variability

    Full text link
    We present a new approach for simulating the atmospheric dynamics of the close-in giant planet HD209458b that allows for the decoupling of radiative and thermal energies, direct stellar heating of the interior, and the solution of the full 3D Navier Stokes equations. Simulations reveal two distinct temperature inversions (increasing temperature with decreasing pressure) at the sub-stellar point due to the combined effects of opacity and dynamical flow structure and exhibit instabilities leading to changing velocities and temperatures on the nightside for a range of viscosities. Imposed on the quasi-static background, temperature variations of up to 15% are seen near the terminators and the location of the coldest spot is seen to vary by more than 20 degrees, occasionally appearing west of the anti-solar point. Our new approach introduces four major improvements to our previous methods including simultaneously solving both the thermal energy and radiative equations in both the optical and infrared, incorporating updated opacities, including a more accurate treatment of stellar energy deposition that incorporates the opacity relevant for higher energy stellar photons, and the addition of explicit turbulent viscosity.Comment: Accepted for publication in Ap

    Laminar Cortical Dynamics of Visual Form and Motion Interactions During Coherent Object Motion Perception

    Full text link
    How do visual form and motion processes cooperate to compute object motion when each process separately is insufficient? A 3D FORMOTION model specifies how 3D boundary representations, which separate figures from backgrounds within cortical area V2, capture motion signals at the appropriate depths in MT; how motion signals in MT disambiguate boundaries in V2 via MT-to-Vl-to-V2 feedback; how sparse feature tracking signals are amplified; and how a spatially anisotropic motion grouping process propagates across perceptual space via MT-MST feedback to integrate feature-tracking and ambiguous motion signals to determine a global object motion percept. Simulated data include: the degree of motion coherence of rotating shapes observed through apertures, the coherent vs. element motion percepts separated in depth during the chopsticks illusion, and the rigid vs. non-rigid appearance of rotating ellipses.Air Force Office of Scientific Research (F49620-01-1-0397); National Geospatial-Intelligence Agency (NMA201-01-1-2016); National Science Foundation (BCS-02-35398, SBE-0354378); Office of Naval Research (N00014-95-1-0409, N00014-01-1-0624

    Precise Model for Small-Body Thermal Radiation Pressure Acting on Spacecraft

    Get PDF
    A precise representation of small-body surface thermal radiation pressure effects acting on orbiting spacecraft is discussed. The proposed framework takes advantage of a general Fourier series expansion to compute small-body surface thermal radiation pressure. Fourier series expansion has been used before for the precise representation of solar radiation pressure effects on spacecraft orbiting small bodies. This framework takes into account the geometric relationship of orbiting spacecraft with the small-body surface, surface thermal parameters of the small body, and the shape and surface properties of spacecraft allowing for the computation of thermal radiation pressure, which may also be used for the generation of precise orbit determination solutions. After presenting the general model, an example application of the model for the OSIRIS-REx spacecraft in orbit about Asteroid (101955) Bennu is provided. Simulation studies were used to evaluate the effect of mismodeling of thermal radiation pressure on the spacecraft and study the use of the proposed method for generating precise orbit determination solutions

    The Influence of Non-Uniform Cloud Cover on Transit Transmission Spectra

    Full text link
    We model the impact of non-uniform cloud cover on transit transmission spectra. Patchy clouds exist in nearly every solar system atmosphere, brown dwarfs, and transiting exoplanets. Our major findings suggest that fractional cloud coverage can exactly mimic high mean molecular weight atmospheres and vice-versa over certain wavelength regions, in particular, over the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) bandpass (1.1-1.7 μ\mum). We also find that patchy cloud coverage exhibits a signature that is different from uniform global clouds. Furthermore, we explain analytically why the "patchy cloud-high mean molecular weight" degeneracy exists. We also explore the degeneracy of non-uniform cloud coverage in atmospheric retrievals on both synthetic and real planets. We find from retrievals on a synthetic solar composition hot Jupiter with patchy clouds and a cloud free high mean molecular weight warm Neptune, that both cloud free high mean molecular weight atmospheres and partially cloudy atmospheres can explain the data equally well. Another key find is that the HST WFC3 transit transmission spectra of two well observed objects, the hot Jupiter HD189733b and the warm Neptune HAT-P-11b, can be explained well by solar composition atmospheres with patchy clouds without the need to invoke high mean molecular weight or global clouds. The degeneracy between high molecular weight and solar composition partially cloudy atmospheres can be broken by observing the molecular Rayleigh scattering differences between the two. Furthermore, the signature of partially cloudy limbs also appears as a ∼\sim100 ppm residual in the ingress and egress of the transit light curves, provided the transit timing is known to seconds.Comment: Accepted to ApJ Feb. 8, 201
    • …
    corecore