111 research outputs found

    Termination proofs by multiset path orderings imply primitive recursive derivation lengths

    Get PDF
    AbstractIt is shown that a termination proof for a term-rewriting system using multiset path orderings (i.e. recursive path orderings with multiset status only) yields a primitive recursive bound on the length of derivations, measured in the size of the starting term, confirming a conjecture of Plaisted (1978). This result holds for a great variety of path orderings, including path of subterms ordering, recursive decomposition ordering, and the path ordering of Kapur (1985) if lexicographic status is not incorporated. The result is essentially optimal as such derivation lengths can be found in each level of the Grzegorczyk hierarchy, even for string-rewriting systems

    Complexity Bounds for Ordinal-Based Termination

    Full text link
    `What more than its truth do we know if we have a proof of a theorem in a given formal system?' We examine Kreisel's question in the particular context of program termination proofs, with an eye to deriving complexity bounds on program running times. Our main tool for this are length function theorems, which provide complexity bounds on the use of well quasi orders. We illustrate how to prove such theorems in the simple yet until now untreated case of ordinals. We show how to apply this new theorem to derive complexity bounds on programs when they are proven to terminate thanks to a ranking function into some ordinal.Comment: Invited talk at the 8th International Workshop on Reachability Problems (RP 2014, 22-24 September 2014, Oxford

    The Light Lexicographic path Ordering

    Full text link
    We introduce syntactic restrictions of the lexicographic path ordering to obtain the Light Lexicographic Path Ordering. We show that the light lexicographic path ordering leads to a characterisation of the functions computable in space bounded by a polynomial in the size of the inputs

    Formalizing Termination Proofs under Polynomial Quasi-interpretations

    Full text link
    Usual termination proofs for a functional program require to check all the possible reduction paths. Due to an exponential gap between the height and size of such the reduction tree, no naive formalization of termination proofs yields a connection to the polynomial complexity of the given program. We solve this problem employing the notion of minimal function graph, a set of pairs of a term and its normal form, which is defined as the least fixed point of a monotone operator. We show that termination proofs for programs reducing under lexicographic path orders (LPOs for short) and polynomially quasi-interpretable can be optimally performed in a weak fragment of Peano arithmetic. This yields an alternative proof of the fact that every function computed by an LPO-terminating, polynomially quasi-interpretable program is computable in polynomial space. The formalization is indeed optimal since every polynomial-space computable function can be computed by such a program. The crucial observation is that inductive definitions of minimal function graphs under LPO-terminating programs can be approximated with transfinite induction along LPOs.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    Multiset Path Orderings and Their Application to Termination of Term Rewriting Systems

    Get PDF
    In this expository paper, a comprehensive study of multiset orderings, nested multiset orderings and multiset path orderings is presented. In particular, it is illustrated how multiset path orderings admit the use of relatively simple and intuitive termination functions that lead to termination of  a class of term rewriting systems

    Ackermannian and Primitive-Recursive Bounds with Dickson's Lemma

    Full text link
    Dickson's Lemma is a simple yet powerful tool widely used in termination proofs, especially when dealing with counters or related data structures. However, most computer scientists do not know how to derive complexity upper bounds from such termination proofs, and the existing literature is not very helpful in these matters. We propose a new analysis of the length of bad sequences over (N^k,\leq) and explain how one may derive complexity upper bounds from termination proofs. Our upper bounds improve earlier results and are essentially tight

    Proof Theory at Work: Complexity Analysis of Term Rewrite Systems

    Full text link
    This thesis is concerned with investigations into the "complexity of term rewriting systems". Moreover the majority of the presented work deals with the "automation" of such a complexity analysis. The aim of this introduction is to present the main ideas in an easily accessible fashion to make the result presented accessible to the general public. Necessarily some technical points are stated in an over-simplified way.Comment: Cumulative Habilitation Thesis, submitted to the University of Innsbruc

    Polynomial Path Orders: A Maximal Model

    Full text link
    This paper is concerned with the automated complexity analysis of term rewrite systems (TRSs for short) and the ramification of these in implicit computational complexity theory (ICC for short). We introduce a novel path order with multiset status, the polynomial path order POP*. Essentially relying on the principle of predicative recursion as proposed by Bellantoni and Cook, its distinct feature is the tight control of resources on compatible TRSs: The (innermost) runtime complexity of compatible TRSs is polynomially bounded. We have implemented the technique, as underpinned by our experimental evidence our approach to the automated runtime complexity analysis is not only feasible, but compared to existing methods incredibly fast. As an application in the context of ICC we provide an order-theoretic characterisation of the polytime computable functions. To be precise, the polytime computable functions are exactly the functions computable by an orthogonal constructor TRS compatible with POP*

    Polynomial Path Orders

    Full text link
    This paper is concerned with the complexity analysis of constructor term rewrite systems and its ramification in implicit computational complexity. We introduce a path order with multiset status, the polynomial path order POP*, that is applicable in two related, but distinct contexts. On the one hand POP* induces polynomial innermost runtime complexity and hence may serve as a syntactic, and fully automatable, method to analyse the innermost runtime complexity of term rewrite systems. On the other hand POP* provides an order-theoretic characterisation of the polytime computable functions: the polytime computable functions are exactly the functions computable by an orthogonal constructor TRS compatible with POP*.Comment: LMCS version. This article supersedes arXiv:1209.379
    • …
    corecore