30 research outputs found

    Learning Term Weights for Ad-hoc Retrieval

    Full text link
    Most Information Retrieval models compute the relevance score of a document for a given query by summing term weights specific to a document or a query. Heuristic approaches, like TF-IDF, or probabilistic models, like BM25, are used to specify how a term weight is computed. In this paper, we propose to leverage learning-to-rank principles to learn how to compute a term weight for a given document based on the term occurrence pattern

    Reply With: Proactive Recommendation of Email Attachments

    Full text link
    Email responses often contain items-such as a file or a hyperlink to an external document-that are attached to or included inline in the body of the message. Analysis of an enterprise email corpus reveals that 35% of the time when users include these items as part of their response, the attachable item is already present in their inbox or sent folder. A modern email client can proactively retrieve relevant attachable items from the user's past emails based on the context of the current conversation, and recommend them for inclusion, to reduce the time and effort involved in composing the response. In this paper, we propose a weakly supervised learning framework for recommending attachable items to the user. As email search systems are commonly available, we constrain the recommendation task to formulating effective search queries from the context of the conversations. The query is submitted to an existing IR system to retrieve relevant items for attachment. We also present a novel strategy for generating labels from an email corpus---without the need for manual annotations---that can be used to train and evaluate the query formulation model. In addition, we describe a deep convolutional neural network that demonstrates satisfactory performance on this query formulation task when evaluated on the publicly available Avocado dataset and a proprietary dataset of internal emails obtained through an employee participation program.Comment: CIKM2017. Proceedings of the 26th ACM International Conference on Information and Knowledge Management. 201

    Off the Beaten Path: Let's Replace Term-Based Retrieval with k-NN Search

    Full text link
    Retrieval pipelines commonly rely on a term-based search to obtain candidate records, which are subsequently re-ranked. Some candidates are missed by this approach, e.g., due to a vocabulary mismatch. We address this issue by replacing the term-based search with a generic k-NN retrieval algorithm, where a similarity function can take into account subtle term associations. While an exact brute-force k-NN search using this similarity function is slow, we demonstrate that an approximate algorithm can be nearly two orders of magnitude faster at the expense of only a small loss in accuracy. A retrieval pipeline using an approximate k-NN search can be more effective and efficient than the term-based pipeline. This opens up new possibilities for designing effective retrieval pipelines. Our software (including data-generating code) and derivative data based on the Stack Overflow collection is available online

    Towards Better Text Understanding and Retrieval through Kernel Entity Salience Modeling

    Full text link
    This paper presents a Kernel Entity Salience Model (KESM) that improves text understanding and retrieval by better estimating entity salience (importance) in documents. KESM represents entities by knowledge enriched distributed representations, models the interactions between entities and words by kernels, and combines the kernel scores to estimate entity salience. The whole model is learned end-to-end using entity salience labels. The salience model also improves ad hoc search accuracy, providing effective ranking features by modeling the salience of query entities in candidate documents. Our experiments on two entity salience corpora and two TREC ad hoc search datasets demonstrate the effectiveness of KESM over frequency-based and feature-based methods. We also provide examples showing how KESM conveys its text understanding ability learned from entity salience to search

    Semantic-Enhanced Differentiable Search Index Inspired by Learning Strategies

    Full text link
    Recently, a new paradigm called Differentiable Search Index (DSI) has been proposed for document retrieval, wherein a sequence-to-sequence model is learned to directly map queries to relevant document identifiers. The key idea behind DSI is to fully parameterize traditional ``index-retrieve'' pipelines within a single neural model, by encoding all documents in the corpus into the model parameters. In essence, DSI needs to resolve two major questions: (1) how to assign an identifier to each document, and (2) how to learn the associations between a document and its identifier. In this work, we propose a Semantic-Enhanced DSI model (SE-DSI) motivated by Learning Strategies in the area of Cognitive Psychology. Our approach advances original DSI in two ways: (1) For the document identifier, we take inspiration from Elaboration Strategies in human learning. Specifically, we assign each document an Elaborative Description based on the query generation technique, which is more meaningful than a string of integers in the original DSI; and (2) For the associations between a document and its identifier, we take inspiration from Rehearsal Strategies in human learning. Specifically, we select fine-grained semantic features from a document as Rehearsal Contents to improve document memorization. Both the offline and online experiments show improved retrieval performance over prevailing baselines.Comment: Accepted by KDD 202
    corecore