44,241 research outputs found

    Data linkage algebra, data linkage dynamics, and priority rewriting

    Get PDF
    We introduce an algebra of data linkages. Data linkages are intended for modelling the states of computations in which dynamic data structures are involved. We present a simple model of computation in which states of computations are modelled as data linkages and state changes take place by means of certain actions. We describe the state changes and replies that result from performing those actions by means of a term rewriting system with rule priorities. The model in question is an upgrade of molecular dynamics. The upgrading is mainly concerned with the features to deal with values and the features to reclaim garbage.Comment: 48 pages, typos corrected, phrasing improved, definition of services replaced; presentation improved; presentation improved and appendix adde

    Interpolating between low and high energy QCD via a 5D Yang-Mills model

    Full text link
    We describe the Goldstone bosons of massless QCD together with an infinite number of spin-1 mesons. The field content of the model is SU(Nf)xSU(Nf) Yang-Mills in a compact extra-dimension. Electroweak interactions reside on one brane. Breaking of chiral symmetry occurs due to the boundary conditions on the other brane, away from our world, and is therefore spontaneous. Our implementation of the holographic recipe maintains chiral symmetry explicit throughout. For intermediate energies, we extract resonance couplings. These satisfy sum rules due to the 5D nature of the model. These sum rules imply, when taking the high energy limit, that perturbative QCD constraints are satisfied. We also illustrate how the 5D model implies a definite prescription for handling infinite sums over 4D resonances. Taking the low energy limit, we recover the chiral expansion and the corresponding non-local order parameters. All local order parameters are introduced separately.Comment: Corresponds to published version, with some typos correcte

    CHAMP: A Cherednik Algebra Magma Package

    Full text link
    We present a computer algebra package based on Magma for performing computations in rational Cherednik algebras at arbitrary parameters and in Verma modules for restricted rational Cherednik algebras. Part of this package is a new general Las Vegas algorithm for computing the head and the constituents of a module with simple head in characteristic zero which we develop here theoretically. This algorithm is very successful when applied to Verma modules for restricted rational Cherednik algebras and it allows us to answer several questions posed by Gordon in some specific cases. We could determine the decomposition matrices of the Verma modules, the graded G-module structure of the simple modules, and the Calogero-Moser families of the generic restricted rational Cherednik algebra for around half of the exceptional complex reflection groups. In this way we could also confirm Martino's conjecture for several exceptional complex reflection groups.Comment: Final version to appear in LMS J. Comput. Math. 41 pages, 3 ancillary files. CHAMP is available at http://thielul.github.io/CHAMP/. All results are listed explicitly in the ancillary PDF document (currently 935 pages). Please check the website for further update

    A Complexity Preserving Transformation from Jinja Bytecode to Rewrite Systems

    Full text link
    We revisit known transformations from Jinja bytecode to rewrite systems from the viewpoint of runtime complexity. Suitably generalising the constructions proposed in the literature, we define an alternative representation of Jinja bytecode (JBC) executions as "computation graphs" from which we obtain a novel representation of JBC executions as "constrained rewrite systems". We prove non-termination and complexity preservation of the transformation. We restrict to well-formed JBC programs that only make use of non-recursive methods and expect tree-shaped objects as input. Our approach allows for simplified correctness proofs and provides a framework for the combination of the computation graph method with standard techniques from static program analysis like for example "reachability analysis".Comment: 36 page

    Nested (inverse) binomial sums and new iterated integrals for massive Feynman diagrams

    Full text link
    Nested sums containing binomial coefficients occur in the computation of massive operator matrix elements. Their associated iterated integrals lead to alphabets including radicals, for which we determined a suitable basis. We discuss algorithms for converting between sum and integral representations, mainly relying on the Mellin transform. To aid the conversion we worked out dedicated rewrite rules, based on which also some general patterns emerging in the process can be obtained.Comment: 13 pages LATEX, one style file, Proceedings of Loops and Legs in Quantum Field Theory -- LL2014,27 April 2014 -- 02 May 2014 Weimar, German

    Sum rules and three point functions

    Full text link
    Sum rules constraining the R-current spectral densities are derived holographically for the case of D3-branes, M2-branes and M5-branes all at finite chemical potentials. In each of the cases the sum rule relates a certain integral of the spectral density over the frequency to terms which depend both on long distance physics, hydrodynamics and short distance physics of the theory. The terms which which depend on the short distance physics result from the presence of certain chiral primaries in the OPE of two R-currents which are turned on at finite chemical potential. Since these sum rules contain information of the OPE they provide an alternate method to obtain the structure constants of the two R-currents and the chiral primary. As a consistency check we show that the 3 point function derived from the sum rule precisely matches with that obtained using Witten diagrams.Comment: 41 page

    A UV completion of scalar electrodynamics

    Full text link
    In previous works, we constructed UV-finite and unitary scalar field theories with an infinite spectrum of propagating modes for arbitrary polynomial interactions. In this paper, we introduce infinitely many massive vector fields into a U(1) gauge theory to construct a theory with UV-finiteness and unitarity.Comment: 25 page
    corecore